It's a cute and clever example, but thinking too hard about it distracts from its purpose. That section of the book is showing off list slices. Anything beyond slicing a list, no matter what is in the list, is not germane to the purpose of the examples.
You're only on page 82 of a very big book (we literally couldn't fit any more pages in because we were at the limit of the binding method), so there's not much we could throw at you. Among the other list slices examples, there this clever one that I wouldn't use in real code. That's the curse of contrived examples though.
But let's say there were a reverse comma operator. It would have to evaluate both side of the comma. Many answers go right for "just return the first thing". That's not the feature though. You have to visit every expression even though you keep one of them.
Consider this much much advanced version with a series of anonymous subroutines that I immediately dereference, each of which prints something then returns a result:
use v5.10;
my $scalar = (
sub { say "First"; 35 } -> (),
sub { say "wantarray is ", 0+wantarray } -> (),
sub { say "Second"; 27 } -> (),
sub { say "Third"; 137 } -> ()
);
The parens are there only for precedence since the assignment operator binds more tightly than the comma operator. There's no list here, even though it looks like there is one.
The output shows that Perl evaluated each even though it kept on the last one:
First
wantarray is 0
Second
Third
Scalar is [137]
The poorly-named wantarray built-in returns false, noting that the subroutine thinks it is in scalar context.
Now, suppose that you wanted to flip that around so it still evaluates every expression but keeps the first one. You can use a literal list access:
my $scalar = (
sub { say "First"; 35 } -> (),
sub { say "wantarray is ", 0+wantarray } -> (),
sub { say "Second"; 27 } -> (),
sub { say "Third"; 137 } -> ()
)[0];
With the addition on the subscription, the righthand side is now a list and I pull out the first item. Notice that the second subroutine thinks it is in list context now. I get the result of the first subroutine:
First
wantarray is 1
Second
Third
Scalar is [35]
But, let's put this in a subroutine. I still need to call each subroutine even though I won't use the results of the other ones:
my $scalar = reverse_comma(
sub { say "First"; 35 },
sub { say "wantarray is ", 0+wantarray },
sub { say "Second"; 27 },
sub { say "Third"; 137 }
);
say "Scalar is [$scalar]";
sub reverse_comma { ( map { $_->() } @_ )[0] }
Or, would I use the results of the other ones? What if I did something slightly different. I'll add a side effect of setting $last
to the evaluated expression:
use v5.10;
my $last;
my $scalar = reverse_comma(
sub { say "First"; 35 },
sub { say "wantarray is ", 0+wantarray },
sub { say "Second"; 27 },
sub { say "Third"; 137 }
);
say "Scalar is [$scalar]";
say "Last is [$last]";
sub reverse_comma { ( map { $last = $_->() } @_ )[0] }
Now I see the feature that makes the scalar comma interesting. It evaluates all the expressions, and some of them might have side effects:
First
wantarray is 0
Second
Third
Scalar is [35]
Last is [137]
It's not a huge secret that tchrist is handy with shell scripts. The Perl to csh converter was basically his inbox (or comp.lang.perl). You'll see some shell like idioms popping up in his examples. Something like that trick to swap two numerical values with one statement:
use v5.10;
my $x = 17;
my $y = 137;
say "x => $x, y => $y";
$x = (
$x = $x + $y,
$y = $x - $y,
$x - $y,
);
say "x => $x, y => $y";
The side effects are important there.
So, back to the Camel, we have an example of where the thing that has the side effect is the pop array operator:
use v5.10;
my @foo = qw( g h j k );
say "list: @foo";
my $scalar = sub { return ( pop(@foo), pop(@foo) )[0] }->();
say "list: @foo";
This shows off that each expression on either side of all the commas are evaluated. I threw in the subroutine wrapper since we didn't show a complete example:
list: g h j k
list: g h
But, none of this was the point of that section, which was indexing into a list literal. The point of the example was not to return a different result than the other examples or Perl features. It was to return the same thing assuming the comma operator acted differently. The section is about list slices and is showing off list slices, so the stuff in the list wasn't the important part.