There are 8 pegs in nine holes. At beginning, the four red pegs on the left and the four blue pegs are on the right, and one empty hole between them. The puzzle is to move all the red to the right, and blue pegs to the left(in other opposite). These are the legal moves to do so:
- Pegs may only move forward (red may move right and blue left).
- A peg may move forward one step into an open position.
- A peg may skip over exactly one peg of the opposite color, if the position beyond it is open.
This is what I wrote, but it doesn't work
% Form of board, b for blue, r for red, o for empty.
% [ [r,r,r,r], [o], [b,b,b,b] ]
% jumps
linjmp([x, x, o | T], [o, o, x | T]).
linjmp([o, x, x | T], [x, o, o | T]).
linjmp([H|T1], [H|T2]) :- linjmp(T1,T2).
% Series of legal boards.
series(From, To, [From, To]) :- jump(From, To).
series(From, To, [From, By | Rest])
:- jump(From, By),
series(By, To, [By | Rest]).
% Print a series of boards. This puts one board per line and looks a lot
% nicer than the jumble that appears when the system simply beltches out
% a list of boards. The write_ln predicate is a built-in which always
% succeeds (is always satisfied), but prints as a side-effect. Therefore
% print_series(Z) will succeed with any list, and the members of the list
% will be printed, one per line, as a side-effect of that success.
print_series_r([]) :-
write_ln('*******************************************************').
print_series_r([X|Y]) :- write_ln(X), print_series_r(Y).
print_series(Z) :-
write_ln('\n*******************************************************'),
print_series_r(Z).
% A solution.
solution(L) :- series([[r,r,r,r], [o], [b,b,b,b]],
[[b,b,b,b], [o], [r,r,r,r]], L).
% Find a print the first solution.
solve :- solution(X), print_series(X).
% Find all the solutions.
solveall :- solve, fail.
% This finds each solution with stepping.
solvestep(Z) :- Z = next, solution(X), print_series(X).
It should be like so when it works:
?- consult(linejump).
% linejump compiled 0.00 sec, 3,612 bytes
true.
?- solve.
*******************************************************
[r, r, r, r, o, b, b, b, b]
[r, r, r, o, r, b, b, b, b]
[r, r, r, b, r, o, b, b, b]
[r, r, r, b, r, b, o, b, b]
[r, r, r, b, o, b, r, b, b]
[r, r, o, b, r, b, r, b, b]
[r, o, r, b, r, b, r, b, b]
[r, b, r, o, r, b, r, b, b]
[r, b, r, b, r, o, r, b, b]
[r, b, r, b, r, b, r, o, b]
[r, b, r, b, r, b, r, b, o]
[r, b, r, b, r, b, o, b, r]
[r, b, r, b, o, b, r, b, r]
[r, b, o, b, r, b, r, b, r]
[o, b, r, b, r, b, r, b, r]
[b, o, r, b, r, b, r, b, r]
[b, b, r, o, r, b, r, b, r]
[b, b, r, b, r, o, r, b, r]
[b, b, r, b, r, b, r, o, r]
[b, b, r, b, r, b, o, r, r]
[b, b, r, b, o, b, r, r, r]
[b, b, o, b, r, b, r, r, r]
[b, b, b, o, r, b, r, r, r]
[b, b, b, b, r, o, r, r, r]
[b, b, b, b, o, r, r, r, r]
*******************************************************
true ;
*******************************************************
[r, r, r, r, o, b, b, b, b]
[r, r, r, r, b, o, b, b, b]
[r, r, r, o, b, r, b, b, b]
[r, r, o, r, b, r, b, b, b]
[r, r, b, r, o, r, b, b, b]
[r, r, b, r, b, r, o, b, b]
[r, r, b, r, b, r, b, o, b]
[r, r, b, r, b, o, b, r, b]
[r, r, b, o, b, r, b, r, b]
[r, o, b, r, b, r, b, r, b]
[o, r, b, r, b, r, b, r, b]
[b, r, o, r, b, r, b, r, b]
[b, r, b, r, o, r, b, r, b]
[b, r, b, r, b, r, o, r, b]
[b, r, b, r, b, r, b, r, o]
[b, r, b, r, b, r, b, o, r]
[b, r, b, r, b, o, b, r, r]
[b, r, b, o, b, r, b, r, r]
[b, o, b, r, b, r, b, r, r]
[b, b, o, r, b, r, b, r, r]
[b, b, b, r, o, r, b, r, r]
[b, b, b, r, b, r, o, r, r]
[b, b, b, r, b, o, r, r, r]
[b, b, b, o, b, r, r, r, r]
[b, b, b, b, o, r, r, r, r]
*******************************************************
true .
?-