I have generated a decision tree model of iris dataset using bigml.com . I have downloaded this decision tree model as PMML and wants to use it for prediction in my local computer.
PMML model from bigml
<?xml version="1.0" encoding="utf-8"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Header description="Generated by BigML"/>
<DataDictionary>
<DataField dataType="double" displayName="Sepal length" name="000001" optype="continuous"/>
<DataField dataType="double" displayName="Sepal width" name="000002" optype="continuous"/>
<DataField dataType="double" displayName="Petal length" name="000003" optype="continuous"/>
<DataField dataType="double" displayName="Petal width" name="000004" optype="continuous"/>
<DataField dataType="string" displayName="Species" name="000005" optype="categorical">
<Value value="Iris-setosa"/>
<Value value="Iris-versicolor"/>
<Value value="Iris-virginica"/>
</DataField>
</DataDictionary>
<TreeModel algorithmName="mtree" functionName="classification" modelName="">
<MiningSchema>
<MiningField name="000001"/>
<MiningField name="000002"/>
<MiningField name="000003"/>
<MiningField name="000004"/>
<MiningField name="000005" usageType="target"/>
</MiningSchema>
<Node recordCount="150" score="Iris-setosa">
<True/>
<ScoreDistribution recordCount="50" value="Iris-setosa"/>
<ScoreDistribution recordCount="50" value="Iris-versicolor"/>
<ScoreDistribution recordCount="50" value="Iris-virginica"/>
<Node recordCount="100" score="Iris-versicolor">
<SimplePredicate field="000003" operator="greaterThan" value="2.45"/>
<ScoreDistribution recordCount="50" value="Iris-versicolor"/>
<ScoreDistribution recordCount="50" value="Iris-virginica"/>
<Node recordCount="46" score="Iris-virginica">
<SimplePredicate field="000004" operator="greaterThan" value="1.75"/>
<ScoreDistribution recordCount="45" value="Iris-virginica"/>
<ScoreDistribution recordCount="1" value="Iris-versicolor"/>
<Node recordCount="43" score="Iris-virginica">
<SimplePredicate field="000003" operator="greaterThan" value="4.85"/>
<ScoreDistribution recordCount="43" value="Iris-virginica"/>
</Node>
<Node recordCount="3" score="Iris-virginica">
<SimplePredicate field="000003" operator="lessOrEqual" value="4.85"/>
<ScoreDistribution recordCount="2" value="Iris-virginica"/>
<ScoreDistribution recordCount="1" value="Iris-versicolor"/>
<Node recordCount="1" score="Iris-versicolor">
<SimplePredicate field="000002" operator="greaterThan" value="3.1"/>
<ScoreDistribution recordCount="1" value="Iris-versicolor"/>
</Node>
<Node recordCount="2" score="Iris-virginica">
<SimplePredicate field="000002" operator="lessOrEqual" value="3.1"/>
<ScoreDistribution recordCount="2" value="Iris-virginica"/>
</Node>
</Node>
</Node>
<Node recordCount="54" score="Iris-versicolor">
<SimplePredicate field="000004" operator="lessOrEqual" value="1.75"/>
<ScoreDistribution recordCount="49" value="Iris-versicolor"/>
<ScoreDistribution recordCount="5" value="Iris-virginica"/>
<Node recordCount="6" score="Iris-virginica">
<SimplePredicate field="000003" operator="greaterThan" value="4.95"/>
<ScoreDistribution recordCount="4" value="Iris-virginica"/>
<ScoreDistribution recordCount="2" value="Iris-versicolor"/>
<Node recordCount="3" score="Iris-versicolor">
<SimplePredicate field="000004" operator="greaterThan" value="1.55"/>
<ScoreDistribution recordCount="2" value="Iris-versicolor"/>
<ScoreDistribution recordCount="1" value="Iris-virginica"/>
<Node recordCount="1" score="Iris-virginica">
<SimplePredicate field="000003" operator="greaterThan" value="5.45"/>
<ScoreDistribution recordCount="1" value="Iris-virginica"/>
</Node>
<Node recordCount="2" score="Iris-versicolor">
<SimplePredicate field="000003" operator="lessOrEqual" value="5.45"/>
<ScoreDistribution recordCount="2" value="Iris-versicolor"/>
</Node>
</Node>
<Node recordCount="3" score="Iris-virginica">
<SimplePredicate field="000004" operator="lessOrEqual" value="1.55"/>
<ScoreDistribution recordCount="3" value="Iris-virginica"/>
</Node>
</Node>
<Node recordCount="48" score="Iris-versicolor">
<SimplePredicate field="000003" operator="lessOrEqual" value="4.95"/>
<ScoreDistribution recordCount="47" value="Iris-versicolor"/>
<ScoreDistribution recordCount="1" value="Iris-virginica"/>
<Node recordCount="1" score="Iris-virginica">
<SimplePredicate field="000004" operator="greaterThan" value="1.65"/>
<ScoreDistribution recordCount="1" value="Iris-virginica"/>
</Node>
<Node recordCount="47" score="Iris-versicolor">
<SimplePredicate field="000004" operator="lessOrEqual" value="1.65"/>
<ScoreDistribution recordCount="47" value="Iris-versicolor"/>
</Node>
</Node>
</Node>
</Node>
<Node recordCount="50" score="Iris-setosa">
<SimplePredicate field="000003" operator="lessOrEqual" value="2.45"/>
<ScoreDistribution recordCount="50" value="Iris-setosa"/>
</Node>
</Node>
</TreeModel>
</PMML>
I generally use R for machine learning and wants to load and use this model for prediction in my system. R itself has a pmml package but it seems that it is not possible to use it for prediction. Is there any other way I can use this PMML model for prediction in R. If its not possible can this PMML model can be used with other languages such as python or weka? if yes how can i do it (code required).
python model from bigml
def predict_species(sepal_width=None,
petal_length=None,
petal_width=None):
""" Predictor for Species from
This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic
in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes
of 50 instances each, where each class refers to a type of iris plant.
Source
Iris Data Set[*]
Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository[*]. Irvine, CA: University of California, School of Information and Computer Science.
[*]Iris Data Set: http://archive.ics.uci.edu/ml/datasets/Iris
[*]UCI Machine Learning Repository: http://archive.ics.uci.edu/ml
"""
if (petal_length is None):
return u'Iris-setosa'
if (petal_length > 2.45):
if (petal_width is None):
return u'Iris-versicolor'
if (petal_width > 1.75):
if (petal_length > 4.85):
return u'Iris-virginica'
if (petal_length <= 4.85):
if (sepal_width is None):
return u'Iris-virginica'
if (sepal_width > 3.1):
return u'Iris-versicolor'
if (sepal_width <= 3.1):
return u'Iris-virginica'
if (petal_width <= 1.75):
if (petal_length > 4.95):
if (petal_width > 1.55):
if (petal_length > 5.45):
return u'Iris-virginica'
if (petal_length <= 5.45):
return u'Iris-versicolor'
if (petal_width <= 1.55):
return u'Iris-virginica'
if (petal_length <= 4.95):
if (petal_width > 1.65):
return u'Iris-virginica'
if (petal_width <= 1.65):
return u'Iris-versicolor'
if (petal_length <= 2.45):
return u'Iris-setosa'