A runtime integer's value can only be checked at runtime, since it only exists at runtime, but if you make a runtime check on all writing methods, you can guarantee it's contents. You can build a regular integral replacement class with given restrictions for that.
For constant integers, you could use a template to enforce such a thing.
template<bool cond, typename truetype> struct enable_if {
};
template<typename truetype> struct enable_if<true, truetype> {
typedef truetype type;
};
class RestrictedInt {
int value;
RestrictedInt(int N)
: value(N) {
}
public:
template<int N> static typename enable_if< (N > lowerbound) && (N < upperbound), RestrictedInt>::type Create() {
return RestrictedInt(N);
}
};
Attempting to create this class with a template value that isn't within the range will cause a substitution failure and a compile-time error. Of course, it will still require adornment with operators et al to replace int, and if you want to compile-time guarantee other operations, you will have to provide static functions for them (there are easier ways to guarantee compile-time arithmetic).