On one side with my Android smartphone I'm recording an audio stream using AudioRecord.read(). For the recording I'm using the following specs
- SampleRate: 44100 Hz
- MonoChannel
- PCM-16Bit
- size of the array I use for AudioRecord.read(): 100 (short array)
- using this small size allows me to read every 0.5ms (mean value), so I can use this timestamp later for the multilateration (at least I think so :-) ). Maybe this will be obsolete if I can use cross correlation to determine the TDoA ?!? (see below)
On the other side I have three speaker emitting different sounds using the WebAudio API and the the following specs
- freq1: 17500 Hz
- freq2: 18500 Hz
- freq3: 19500 Hz
- signal length: 200 ms + a fade in and fade out of the gain node of 5ms, so in sum 210ms
My goal is to determine the time difference of arrival (TDoA) between the emitted sounds. So in each iteration I read 100 byte from my AudioRecord buffer and then I want to determine the time difference (if I found one of my sounds). So far I've used a simple frequency filter (using fft) to determine the TDoA, but this is really inacurrate in the real world.
So far I've found out that I can use cross correlation to determine the TDoA value even better (http://paulbourke.net/miscellaneous/correlate/ and some threads here on SO). Now my problem: at the moment I think I have to correlate the recorded signal (my short array) with a generated signal of each of my three sounds above. But I'm struggling to generate this signal. Using the code found at (http://repository.tudelft.nl/view/ir/uuid%3Ab6c16565-cac8-448d-a460-224617a35ae1/ section B1.1. genTone()) does not clearly solve my problem because this will generate an array way bigger than my recorded samples. And so far I know the cross correlation needs two arrays of the same size to work. So how can I generate a sample array?
Another question: is the thinking of how to determine the TDoA so far correct?