For a certain project, I'm using sympy to calculate expressions modulo another function. These functions all have binary coefficients (so x^2 + 2x = x^2$
). Their application is in Galois Fields.
My issue is that when using the the sympy rem
function with inverses (for example x**-1
), is simply returns the inverse of the number (so in this case the answer is 1/x
) rather than returning the modular inverse.
Due to the below comment, here is some further clarification. An oversimplified version of what I'm doing is:
from sympy import *
x = symbols('x')
f = raw_input() #here f = '(x^3 + x)*(x + 1)^2 + (x^2 + x)/(x^3) + (x)^-1'
expand(f)
>>> x**5 + 2*x**4 + 2*x**3 + 2*x**2 + x + 2/x + x**(-2)
#this is what I'm currently doing
rem(expand('(x^3 + x)*(x + 1)^2 + (x^2 + x)/(x^3) + (x)^-1'), 'x^2')
>>> x + 2/x + x**(-2)
#not the answer I am looking for, as I want all the degrees to be positive
This remainder function doesn't act as a mod function (ie doesn't keep things as positive powers of x
), and I'm trying to find a replacement for it. I want to avoid parsing through the expression searching for inverse mods and just have the function deal with that on it's own. I might be missing a parameter, or just looking at a completely different function.
PS: I know that the ability to compute an expression mod another expression, while simultaneously treating inverses as modular inverses exists in sympy since I did it while testing that sympy will be enough for our purposes but didn't save the code back then.