I've spent several hours on different attempts to parallelize my number-crunching code, but it only gets slower when I do so. Unfortunately, the problem disappears when I try to reduce it to the example below and I don't really want to post the whole program here. So the question is: what pitfalls should I avoid in this type of program?
(Note: follow-up after Unutbu's answer is at the bottom.)
Here are the circumstances:
- It's about a module that defines a class
BigData
with a lot of internal data. In the example there is one listff
of interpolation functions; in the actual program, there are more, e.g.,ffA[k]
,ffB[k]
,ffC[k]
. - The calculation would be classified as "embarrassingly parallel": the work can be done on smaller chunks of data at a time. In the example, that's
do_chunk()
. - The approach shown in the example would result, in my actual program, in the worst performance: about 1 second per chunk (on top of 0.1 second or so of actual calculation time when done in a single thread). So, for n=50,
do_single()
would run in 5 seconds anddo_multi()
would run in 55 seconds. - I also tried to split up the work by slicing the
xi
andyi
arrays into contiguous blocks and iterating over allk
values in each chunk. That worked a bit better. Now there was no difference in total execution time whether I used 1, 2, 3, or 4 threads. But of course, I want to see an actual speedup! - This may be related: Multiprocessing.Pool makes Numpy matrix multiplication slower. However, elsewhere in the program, I used a multiprocessing pool for calculations that were much more isolated: a function (not bound to a class) that looks something like
def do_chunk(array1, array2, array3)
and does numpy-only calculations on that array. There, there was a significant speed boost. - The CPU usage scales with the number of parallel processes as expected (300% CPU usage for three threads).
#!/usr/bin/python2.7
import numpy as np, time, sys
from multiprocessing import Pool
from scipy.interpolate import RectBivariateSpline
_tm=0
def stopwatch(msg=''):
tm = time.time()
global _tm
if _tm==0: _tm = tm; return
print("%s: %.2f seconds" % (msg, tm-_tm))
_tm = tm
class BigData:
def __init__(self, n):
z = np.random.uniform(size=n*n*n).reshape((n,n,n))
self.ff = []
for i in range(n):
f = RectBivariateSpline(np.arange(n), np.arange(n), z[i], kx=1, ky=1)
self.ff.append(f)
self.n = n
def do_chunk(self, k, xi, yi):
s = np.sum(np.exp(self.ff[k].ev(xi, yi)))
sys.stderr.write(".")
return s
def do_multi(self, numproc, xi, yi):
procs = []
pool = Pool(numproc)
stopwatch('Pool setup')
for k in range(self.n):
p = pool.apply_async( _do_chunk_wrapper, (self, k, xi, yi))
procs.append(p)
stopwatch('Jobs queued (%d processes)' % numproc)
sum = 0.0
for k in range(self.n):
# Edit/bugfix: replaced p.get by procs[k].get
sum += np.sum(procs[k].get(timeout=30)) # timeout allows ctrl-C interrupt
if k == 0: stopwatch("\nFirst get() done")
stopwatch('Jobs done')
pool.close()
pool.join()
return sum
def do_single(self, xi, yi):
sum = 0.0
for k in range(self.n):
sum += self.do_chunk(k, xi, yi)
stopwatch('\nAll in single process')
return sum
def _do_chunk_wrapper(bd, k, xi, yi): # must be outside class for apply_async to chunk
return bd.do_chunk(k, xi, yi)
if __name__ == "__main__":
stopwatch()
n = 50
bd = BigData(n)
m = 1000*1000
xi, yi = np.random.uniform(0, n, size=m*2).reshape((2,m))
stopwatch('Initialized')
bd.do_multi(2, xi, yi)
bd.do_multi(3, xi, yi)
bd.do_single(xi, yi)
The output:
Initialized: 0.06 seconds
Pool setup: 0.01 seconds
Jobs queued (2 processes): 0.03 seconds
..
First get() done: 0.34 seconds
................................................Jobs done: 7.89 seconds
Pool setup: 0.05 seconds
Jobs queued (3 processes): 0.03 seconds
..
First get() done: 0.50 seconds
................................................Jobs done: 6.19 seconds
..................................................
All in single process: 11.41 seconds
Timings are on an Intel Core i3-3227 CPU with 2 cores, 4 threads, running 64-bit Linux. For the actual program, the multi-processing version (pool mechanism, even if using only one core) was a factor 10 slower than the single-process version.
Follow-up
Unutbu's answer got me on the right track. In the actual program, self
was pickled into a 37 to 140 MB object that needed to be passed to the worker processes. Worse, Python pickling is very slow; the pickling itself took a few seconds, which happened for each chunk of work passed to the worker processes. Other than pickling and passing big data objects, the overhead of apply_async
in Linux is very small; for a small function (adding a few integer arguments), it takes only 0.2 ms per apply_async
/get
pair. So, splitting up the work in very small chunks is not a problem by itself. So, I transmit all big array arguments as indices to global variables. I keep the chunk size small for the purpose of CPU cache optimization.
The global variables are stored in a global dict
; the entries are immediately deleted in the parent process after the worker pool is set up. Only the keys to the dict
are transmitted to the worker procesess. The only big data for pickling/IPC is the new data that is created by the workers.
#!/usr/bin/python2.7
import numpy as np, sys
from multiprocessing import Pool
_mproc_data = {} # global storage for objects during multiprocessing.
class BigData:
def __init__(self, size):
self.blah = np.random.uniform(0, 1, size=size)
def do_chunk(self, k, xi, yi):
# do the work and return an array of the same shape as xi, yi
zi = k*np.ones_like(xi)
return zi
def do_all_work(self, xi, yi, num_proc):
global _mproc_data
mp_key = str(id(self))
_mproc_data['bd'+mp_key] = self # BigData
_mproc_data['xi'+mp_key] = xi
_mproc_data['yi'+mp_key] = yi
pool = Pool(processes=num_proc)
# processes have now inherited the global variabele; clean up in the parent process
for v in ['bd', 'xi', 'yi']:
del _mproc_data[v+mp_key]
# setup indices for the worker processes (placeholder)
n_chunks = 45
n = len(xi)
chunk_len = n//n_chunks
i1list = np.arange(0,n,chunk_len)
i2list = i1list + chunk_len
i2list[-1] = n
klist = range(n_chunks) # placeholder
procs = []
for i in range(n_chunks):
p = pool.apply_async( _do_chunk_wrapper, (mp_key, i1list[i], i2list[i], klist[i]) )
sys.stderr.write(".")
procs.append(p)
sys.stderr.write("\n")
# allocate space for combined results
zi = np.zeros_like(xi)
# get data from workers and finish
for i, p in enumerate(procs):
zi[i1list[i]:i2list[i]] = p.get(timeout=30) # timeout allows ctrl-C handling
pool.close()
pool.join()
return zi
def _do_chunk_wrapper(key, i1, i2, k):
"""All arguments are small objects."""
global _mproc_data
bd = _mproc_data['bd'+key]
xi = _mproc_data['xi'+key][i1:i2]
yi = _mproc_data['yi'+key][i1:i2]
return bd.do_chunk(k, xi, yi)
if __name__ == "__main__":
xi, yi = np.linspace(1, 100, 100001), np.linspace(1, 100, 100001)
bd = BigData(int(1e7))
bd.do_all_work(xi, yi, 4)
Here are the results of a speed test (again, 2 cores, 4 threads), varying the number of worker processes and the amount of memory in the chunks (total bytes of the xi
, yi
, zi
array slices). The numbers are in "million result values per second", but that doesn't matter so much for the comparison. The row for "1 process" is a direct call to do_chunk
with the full input data, without any subprocesses.
#Proc 125K 250K 500K 1000K unlimited
1 0.82
2 4.28 1.96 1.3 1.31
3 2.69 1.06 1.06 1.07
4 2.17 1.27 1.23 1.28
The impact of data size in memory is quite significant. The CPU has 3 MB shared L3 cache, plus 256 KB L2 cache per core. Note that the calculation also needs access to several MB of internal data of the BigData
object. Hence, what we learn from this is that it is useful to do this kind of speed test. For this program, 2 processes is fastest, followed by 4, and 3 is the slowest.