To convert the data to numeric values you could use:
import numpy as np
import pandas as pd
data = list(map(np.array, [ ['','','5',''], ['','8'], ['6','',''], ['7'], [], ['5']]))
df = pd.DataFrame({'col': data})
df['col'] = pd.to_numeric(df['col'].str.join('')).fillna(0).astype(int)
print(df)
yields
col
0 5
1 8
2 6
3 7
4 0
5 5
To convert the data to strings use:
df['col'] = df['col'].str.join('').replace('', '0')
The result looks the same, but the dtype of the column is object
since the values are strings.
If there is more than one number in some rows and you wish to pick the largest,
then you'll have to loop through each item in each row, convert each string to
a numeric value and take the max:
import numpy as np
import pandas as pd
data = list(map(np.array, [ ['','','5','6'], ['','8'], ['6','',''], ['7'], [], ['5']]))
df = pd.DataFrame({'col': data})
df['col'] = [max([int(xi) if xi else 0 for xi in x] or [0]) for x in df['col']]
print(df)
yields
col
0 6 # <-- note ['','','5','6'] was converted to 6
1 8
2 6
3 7
4 0
5 5
For versions of pandas prior to 0.17, you could use df.convert_objects
instead:
import numpy as np
import pandas as pd
data = list(map(np.array, [ ['','','5',''], ['','8'], ['6','',''], ['7'], [], ['5']]))
df = pd.DataFrame({'col': data})
df['col'] = df['col'].str.join('').replace('', '0')
df = df.convert_objects(convert_numeric=True)