You can use Reduce
to merge the timeseries
dataset = list(Series1=read.table(text="
date Value
2015-11-01 1.301
2015-11-02 6.016
2015-11-03 4.871
2015-11-04 10.925
2015-11-05 7.638",header=TRUE,stringsAsFactors=FALSE),Series2=read.table(text="
date Value
2015-11-01 1.532
2015-11-02 3.730
2015-11-03 6.910
2015-11-04 3.554
2015-11-05 2.631",header=TRUE,stringsAsFactors=FALSE))
mergeFun = function(x,y) merge(x,y,by="date")
datamatrix = Reduce(mergeFun,dataset)
colnames(datamatrix) = c("date",names(dataset))
datamatrix
# date Series1 Series2
# 2015-11-01 1.301 1.532
# 2015-11-02 6.016 3.730
# 2015-11-03 4.871 6.910
# 2015-11-04 10.925 3.554
# 2015-11-05 7.638 2.631
Using xts
library for multiple series
I have added extra columns in the dataset and using xts
you could do the following
require(xts)
dataset = list(Series1=read.table(text="
date Value
2015-11-01 1.301
2015-11-02 6.016
2015-11-03 4.871
2015-11-04 10.925
2015-11-05 7.638",header=TRUE,stringsAsFactors=FALSE),Series2=read.table(text="
date Value
2015-11-01 1.532
2015-11-02 3.730
2015-11-03 6.910
2015-11-04 3.554
2015-11-05 2.631",header=TRUE,stringsAsFactors=FALSE),Series3=read.table(text="
date Value
2015-11-01 1
2015-11-02 3
2015-11-03 6
2015-11-04 3
2015-11-05 2",header=TRUE,stringsAsFactors=FALSE),Series4=read.table(text="
date Value
2015-11-01 1.1
2015-11-02 3.2
2015-11-03 6.3
2015-11-04 3.4
2015-11-05 2.5",header=TRUE,stringsAsFactors=FALSE))
datasetXTS = lapply(dataset,function(x) {
z=xts(x[,-1],order.by=as.Date(x[,1],format="%Y-%m-%d"));
colnames(z) = tail(colnames(x),1);
z
})
datamatrix = Reduce(merge,datasetXTS)
datamatrix
# Value Value.1 Value.2 Value.3
#2015-11-01 1.301 1.532 1 1.1
#2015-11-02 6.016 3.730 3 3.2
#2015-11-03 4.871 6.910 6 6.3
#2015-11-04 10.925 3.554 3 3.4
#2015-11-05 7.638 2.631 2 2.
The series have been correctly merged but since you have the same column name in all series they are repeated. To resolve this:
colnames(datamatrix) = names(dataset)
datamatrix
# Series1 Series2 Series3 Series4
#2015-11-01 1.301 1.532 1 1.1
#2015-11-02 6.016 3.730 3 3.2
#2015-11-03 4.871 6.910 6 6.3
#2015-11-04 10.925 3.554 3 3.4
#2015-11-05 7.638 2.631 2 2.5