It is known that GBT s in Spark gives you predicted labels as of now.
I was thinking of trying to calculate predicted probabilities for a class (say all the instances falling under a certain leaf)
The codes to build GBT's
import org.apache.spark.SparkContext
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.BoostingStrategy
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel
import org.apache.spark.mllib.util.MLUtils
//Importing the data
val data = sc.textFile("data/mllib/credit_approval_2_attr.csv") //using the credit approval data set from UCI machine learning repository
//Parsing the data
val parsedData = data.map { line =>
val parts = line.split(',').map(_.toDouble)
LabeledPoint(parts(0), Vectors.dense(parts.tail))
}
//Splitting the data
val splits = parsedData.randomSplit(Array(0.7, 0.3), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
// Train a GradientBoostedTrees model.
// The defaultParams for Classification use LogLoss by default.
val boostingStrategy = BoostingStrategy.defaultParams("Classification")
boostingStrategy.numIterations = 2 // We can use more iterations in practice.
boostingStrategy.treeStrategy.numClasses = 2
boostingStrategy.treeStrategy.maxDepth = 2
boostingStrategy.treeStrategy.maxBins = 32
boostingStrategy.treeStrategy.subsamplingRate = 0.5
boostingStrategy.treeStrategy.maxMemoryInMB =1024
boostingStrategy.learningRate = 0.1
// Empty categoricalFeaturesInfo indicates all features are continuous.
boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int, Int]()
val model = GradientBoostedTrees.train(training, boostingStrategy)
model.toDebugString
This gives me 2 trees of depth 2 as below for simplicity:
Tree 0:
If (feature 3 <= 2.0)
If (feature 2 <= 1.25)
Predict: -0.5752212389380531
Else (feature 2 > 1.25)
Predict: 0.07462686567164178
Else (feature 3 > 2.0)
If (feature 0 <= 30.17)
Predict: 0.7272727272727273
Else (feature 0 > 30.17)
Predict: 1.0
Tree 1:
If (feature 5 <= 67.0)
If (feature 4 <= 100.0)
Predict: 0.5739387416147804
Else (feature 4 > 100.0)
Predict: -0.550117566730937
Else (feature 5 > 67.0)
If (feature 2 <= 0.0)
Predict: 3.0383669122382835
Else (feature 2 > 0.0)
Predict: 0.4332824083446489
My question is: Can I use the above trees to calculate predicted probabilities like:
With respect to every instance in the feature set used for prediction
exp(leaf score from tree 0 + leaf score from tree 1)/(1+exp(leaf score from tree 0 + leaf score from tree 1))
This gives me a kind of probability. But not sure if it is the right way to do it. Also if there is any document explaining how leaf score (prediction) are calculated. I would be really grateful if anybody can share.
Any suggestion would be superb.