Edit This answers the original request for a transformation f(x,y) -> t ~ U[0,1] given x,y ~ U[0,1], and additionally for x and y correlated. The updated question asks specifically for a Hilbert curve, H(x,y) -> t ~ U[0,1] and only for x,y ~ U[0,1] so this answer is no longer relevant.
Consider a random uniform sequence in [0,1] r1, r2, r3, .... You are assigning this sequence to pairs of numbers (x1,y1), (x2,y2), .... What you are asking for is a transformation on pairs (x,y) which yield a uniform random number in [0,1].
Consider the random subsequence r1, r3, ... corresponding to x1, x2, .... If you trust that your number generator is random and uncorrelated in [0,1], then the subsequence x1, x2, ... should also be random and uncorrelated in [0,1]. So the rather simple answer to the first part of your question is a projection onto either the x or y axis. That is, just pick x.
Next consider correlations between x and y. Since you haven't specified the nature of the correlation, let's assume a simple scaling of the axes,
such as x' => [0, 0.5], y' => [0, 3.0], followed by a rotation. The scaling doesn't introduce any correlation since x' and y' are still independent. You can generate it easily enough with a matrix multiply:
M1*p = [x_scale, 0; 0, y_scale] * [x; y]
for matrix M1 and point p. You can introduce a correlation by taking this stretched form and rotating it by theta:
M2*M1*p = [cos(theta), sin(theta); -sin(theta), cos(theta)]*M1*p
Putting it all together with theta = pi/4, or 45 degrees, you can see that larger values of y are correlated with larger values of x:
cos_t = sin_t = cos(pi/4); % at 45 degrees, sin(t) = cos(t) = 1/sqrt(2)
M2 = [cos_t, sin_t; -sin_t, cos_t];
M1 = [0.5, 0.0; 0.0, 3.0];
p = random(2,1000);
p_prime = M2*M1*p;
plot(p_prime(1)', p_prime(2)', '.');
axis('equal');
The resulting plot* shows a band of uniformly distributed numbers at a 45 degree angle:

Further transformations are possible with shear, and if you are clever about it, translation (OpenGL uses 4x4 transformation matrices so that translation can be represented as a linear transform matrix, with an extra dimension added before the transformation steps and removed before they are done).
Given a known affine correlation structure, you can transform back from random points (x',y') to points (x,y) where x and y are independent in [0,1] by solving Mk*...*M1 p = p_prime
for p, or equivalently, by setting p = inv(Mk*...*M1) * p_prime
, where p=[x;y]
. Again, just pick x, which will be uniform in [0,1]. This doesn't work if the transformation matrix is singular, e.g., if you introduce a projection matrix Mj into the mix (though if the projection is the first step you can still recover).
* You may notice that the plot is from python rather than matlab. I don't have matlab or octave sitting in front of me right now, so I hope I got the syntax details right.