I'm trying to use Keras Scikit Learn Wrapper in order to make random search for parameters easier. I wrote an example code here where :
- I generate an artificial dataset:
I am using moons
from scikit learn
from sklearn.datasets import make_moons
dataset = make_moons(1000)
- Model builder definition:
I define build_fn
function needed:
def build_fn(nr_of_layers = 2,
first_layer_size = 10,
layers_slope_coeff = 0.8,
dropout = 0.5,
activation = "relu",
weight_l2 = 0.01,
act_l2 = 0.01,
input_dim = 2):
result_model = Sequential()
result_model.add(Dense(first_layer_size,
input_dim = input_dim,
activation=activation,
W_regularizer= l2(weight_l2),
activity_regularizer=activity_l2(act_l2)
))
current_layer_size = int(first_layer_size * layers_slope_coeff) + 1
for index_of_layer in range(nr_of_layers - 1):
result_model.add(BatchNormalization())
result_model.add(Dropout(dropout))
result_model.add(Dense(current_layer_size,
W_regularizer= l2(weight_l2),
activation=activation,
activity_regularizer=activity_l2(act_l2)
))
current_layer_size = int(current_layer_size * layers_slope_coeff) + 1
result_model.add(Dense(1,
activation = "sigmoid",
W_regularizer = l2(weight_l2)))
result_model.compile(optimizer="rmsprop", metrics = ["accuracy"], loss = "binary_crossentropy")
return result_model
NeuralNet = KerasClassifier(build_fn)
- Parameter grid definition :
Then I defined a parameter grid :
param_grid = {
"nr_of_layers" : [2, 3, 4, 5],
"first_layer_size" : [5, 10, 15],
"layers_slope_coeff" : [0.4, 0.6, 0.8],
"dropout" : [0.3, 0.5, 0.8],
"weight_l2" : [0.01, 0.001, 0.0001],
"verbose" : [0],
"batch_size" : [1],
"nb_epoch" : [30]
}
- RandomizedSearchCV phase:
I defined RandomizedSearchCV
object and fitted with values from artificial dataset:
random_search = RandomizedSearchCV(NeuralNet,
param_distributions=param_grid, verbose=2, n_iter=1, scoring="roc_auc")
random_search.fit(dataset[0], dataset[1])
What I got (after running this code in console) is :
Traceback (most recent call last):
File "C:\Anaconda2\lib\site-packages\IPython\core\interactiveshell.py", line 2885, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-3-c5bdbc2770b7>", line 2, in <module>
random_search.fit(dataset[0], dataset[1])
File "C:\Anaconda2\lib\site-packages\sklearn\grid_search.py", line 996, in fit
return self._fit(X, y, sampled_params)
File "C:\Anaconda2\lib\site-packages\sklearn\grid_search.py", line 553, in _fit
for parameters in parameter_iterable
File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\parallel.py", line 800, in __call__
while self.dispatch_one_batch(iterator):
File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\parallel.py", line 658, in dispatch_one_batch
self._dispatch(tasks)
File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\parallel.py", line 566, in _dispatch
job = ImmediateComputeBatch(batch)
File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\parallel.py", line 180, in __init__
self.results = batch()
File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\parallel.py", line 72, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "C:\Anaconda2\lib\site-packages\sklearn\cross_validation.py", line 1550, in _fit_and_score
test_score = _score(estimator, X_test, y_test, scorer)
File "C:\Anaconda2\lib\site-packages\sklearn\cross_validation.py", line 1606, in _score
score = scorer(estimator, X_test, y_test)
File "C:\Anaconda2\lib\site-packages\sklearn\metrics\scorer.py", line 175, in __call__
y_pred = y_pred[:, 1]
IndexError: index 1 is out of bounds for axis 1 with size 1
This code work fine when instead of using scoring = "roc_auc"
I used accuracy
metric. Can anyone explain me what's wrong? Have anyone had similiar problem?