Haskell version(1.03s):
module Main where
import qualified Data.Text as T
import qualified Data.Text.IO as TIO
import Control.Monad
import Control.Applicative ((<$>))
import Data.Vector.Unboxed (Vector,(!))
import qualified Data.Vector.Unboxed as V
solve :: Vector Int -> Int
solve ar =
V.foldl' go 0 ar' where
ar' = V.zip ar (V.postscanr' max 0 ar)
go sr (p,m) = sr + m - p
main = do
t <- fmap (read . T.unpack) TIO.getLine -- With Data.Text, the example finishes 15% faster.
T.unlines . map (T.pack . show . solve . V.fromList . map (read . T.unpack) . T.words)
<$> replicateM t (TIO.getLine >> TIO.getLine) >>= TIO.putStr
F# version(0.17s):
open System
let solve (ar : uint64[]) =
let ar' =
let t = Array.scanBack max ar 0UL |> fun x -> Array.take (x.Length-1) x
Array.zip ar t
let go sr (p,m) = sr + m - p
Array.fold go 0UL ar'
let getIntLine() =
Console.In.ReadLine().Split [|' '|]
|> Array.choose (fun x -> if x <> "" then uint64 x |> Some else None)
let getInt() = getIntLine().[0]
let t = getInt()
for i=1 to int t do
getInt() |> ignore
let ar = getIntLine()
printfn "%i" (solve ar)
The above two programs are the solutions for the Stock Maximize problem and times are for the first test case of the Run Code
button.
For some reason the F# version is roughly 6x faster, but I am pretty sure that if I replaced the slow library functions with imperative loops that I could speed it up by at least 3 times and more likely 10x.
Could the Haskell version be similarly improved?
I am doing the above for learning purposes and in general I am finding it difficult to figure out how to write efficient Haskell code.