I believe I've done both organizations at one time or another.
Method 1
Just so we're on the same page, the first has the main thread do a listen
. Then, in a loop, it does accept
. It then passes off the return value to a pthread_create
and the client thread's loop does recv/send
in loop processing all commands the remote client wants. When done, it cleans up and terminates.
For an example of this, see my recent answer: multi-threaded file transfer with socket
This has the virtues that the main thread and client threads are straightforward and independent. No thread waits on anything another thread is doing. No thread is waiting on anything that it doesn't have to. Thus, the client threads [plural] can all run at maximum line speed. Also, if a client thread is blocked on a recv
or send
, and another thread can go, it will. It is self balancing.
All thread loops are simple: wait for input, process, send output, repeat
. Even the main thread is simple: sock = accept, pthread_create(sock), repeat
Another thing. The interaction between the client thread and its remote client can be anything they agree on. Any protocol or any type of data transfer.
Method 2
This is somewhat akin to an N worker model, where N is fixed.
Because the accept
is [usually] blocking, we'll need a main thread that is similar to method 1. Except, that instead of firing up a new thread, it needs to malloc a control struct [or some other mgmt scheme] and put the socket in that. It then puts this on a list of client connections and then loops back to the accept
In addition to the N worker threads, you are correct. At least two control threads, one to do select/poll
, recv
, enqueue request
and one to do wait for result
, select/poll
, send
.
Two threads are needed to prevent one of these threads having to wait on two different things: the various sockets [as a group] and the request/result queues from the various worker threads. With a single control thread all actions would have to be non-blocking and the thread would spin like crazy.
Here is an [extremely] simplified version of what the threads look like:
// control thread for recv:
while (1) {
// (1) do blocking poll on all client connection sockets for read
poll(...)
// (2) for all pending sockets do a recv for a request block and enqueue
// it on the request queue
for (all in read_mask) {
request_buf = dequeue(control_free_list)
recv(request_buf);
enqueue(request_list,request_buf);
}
}
// control thread for recv:
while (1) {
// (1) do blocking wait on result queue
// (2) peek at all result queue elements and create aggregate write mask
// for poll from the socket numbers
// (3) do blocking poll on all client connection sockets for write
poll(...)
// (4) for all pending sockets that can be written to
for (all in write_mask) {
// find and dequeue first result buffer from result queue that
// matches the given client
result_buf = dequeue(result_list,client_id);
send(request_buf);
enqueue(control_free_list,request_buf);
}
}
// worker thread:
while (1) {
// (1) do blocking wait on request queue
request_buf = dequeue(request_list);
// (2) process request ...
// (3) do blocking poll on all client connection sockets for write
enqueue(result_list,request_buf);
}
Now, a few things to notice. Only one request queue was used for all worker threads. The recv
control thread did not try to pick an idle [or under utilized] worker thread and enqueue to a thread specific queue [this is another option to consider].
The single request queue is probably the most efficient. But, maybe, not all worker threads are created equal. Some may end up on CPU cores [or cluster nodes] that have special acceleration H/W, so some requests may have to be sent to specific threads.
And, if that is done, can a thread do "work stealing"? That is, a thread completes all its work and notices that another thread has a request in its queue [that is compatible] but hasn't been started. The thread dequeues the request and starts working on it.
Here's a big drawback to this method. The request/result blocks are of [mostly] fixed size. I've done an implementation where the control could have a field for a "side/extra" payload pointer that could be an arbitrary size.
But, if doing a large transfer file transfer, either upload or download, trying to pass this piecemeal through request blocks is not a good idea.
In the download case, the worker thread could usurp the socket temporarily and send
the file data before enqueuing the result to the control thread.
But, for the upload case, if the worker tried to do the upload in a tight loop, it would conflict with recv
control thread. The worker would have to [somehow] alert the control thread to not include the socket in its poll mask.
This is beginning to get complex.
And, there is overhead to all this request/result block enqueue/dequeue.
Also, the two control threads are a "hot spot". The entire throughput of the system depends on them.
And, there are interactions between the sockets. In the simple case, the recv
thread can start one on one socket, but other clients wishing to send requests are delayed until the recv
completes. It is a bottleneck.
This means that all recv
syscalls have to be non-blocking [asynchronous]. The control thread has to manage these async requests (i.e. initiate one and wait for an async completion notification, and only then enqueue the request on the request queue).
This is beginning to get complicated.
The main benefit to wanting to do this is having a large number of simultaneous clients (e.g. 50,000) but keep the number of threads to a sane value (e.g. 100).
Another advantage to this method is that it is possible to assign priorities and use multiple priority queues
Comparison and hybrids
Meanwhile, method 1 does everything that method 2 does, but in a simpler, more robust [and, I suspect, higher throughput way].
After a method 1 client thread is created, it might split the work up and create several sub-threads. It could then act like the control threads of method 2. In fact, it might draw on these threads from a fixed N pool just like method 2.
This would compensate for a weakness of method 1, where the thread is going to do heavy computation. With a large number threads all doing computation, the system would get swamped. The queuing approach helps alleviate this. The client thread is still created/active, but it's sleeping on the result queue.
So, we've just muddied up the waters a bit more.
Either method could be the "front facing" method and have elements of the other underneath.
A given client thread [method 1] or worker thread [method 2] could farm out its work by opening [yet] another connection to a "back office" compute cluster. The cluster could be managed with either method.
So, method 1 is simpler and easier to implement and can easily accomodate most job mixes. Method 2 might be better for heavy compute servers to throttle the requests to limited resources. But, care must be taken with method 2 to avoid bottlenecks.