I would like some help understanding exactly what I have done/ why my code isn't running as I would expect.
I have started to use joblib to try and speed up my code by running a (large) loop in parallel.
I am using it like so:
from joblib import Parallel, delayed
def frame(indeces, image_pad, m):
XY_Patches = np.float32(image_pad[indeces[0]:indeces[0]+m, indeces[1]:indeces[1]+m, indeces[2]])
XZ_Patches = np.float32(image_pad[indeces[0]:indeces[0]+m, indeces[1], indeces[2]:indeces[2]+m])
YZ_Patches = np.float32(image_pad[indeces[0], indeces[1]:indeces[1]+m, indeces[2]:indeces[2]+m])
return XY_Patches, XZ_Patches, YZ_Patches
def Patch_triplanar_para(image_path, patch_size):
Image, Label, indeces = Sampling(image_path)
n = (patch_size -1)/2
m = patch_size
image_pad = np.pad(Image, pad_width=n, mode='constant', constant_values = 0)
A = Parallel(n_jobs= 1)(delayed(frame)(i, image_pad, m) for i in indeces)
A = np.array(A)
Label = np.float32(Label.reshape(len(Label), 1))
R, T, Y = np.hsplit(A, 3)
return R, T, Y, Label
I have been experimenting with "n_jobs", expecting that increasing this will speed up my function. However as I increase n_jobs, things slow down quite significantly. When running this code without "Parallel", things are slower, until I increase the number of jobs from 1.
Why is this the case? I understood that the more jobs I run, the faster the script? am i using this wrong?
Thanks!