Consider the code given here,
https://spark.apache.org/docs/1.2.0/ml-guide.html
import org.apache.spark.ml.classification.LogisticRegression
val training = sparkContext.parallelize(Seq(
LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))))
val lr = new LogisticRegression()
lr.setMaxIter(10).setRegParam(0.01)
val model1 = lr.fit(training)
Assuming we read "training" as a dataframe using sqlContext.read(), should we still do something like
val model1 = lr.fit(sparkContext.parallelize(training)) // or some variation of this
or the fit function will automatically take care of parallelizing the computation/ data when passed a dataFrame
Regards,