I want to use pyspark.mllib.stat.Statistics.corr
function to compute correlation between two columns of pyspark.sql.dataframe.DataFrame
object. corr
function expects to take an rdd
of Vectors
objects. How do I translate a column of df['some_name']
to rdd
of Vectors.dense
object?
Asked
Active
Viewed 4.0k times
16
4 Answers
30
There should be no need for that. For numerical you can compute correlation directly using DataFrameStatFunctions.corr
:
df1 = sc.parallelize([(0.0, 1.0), (1.0, 0.0)]).toDF(["x", "y"])
df1.stat.corr("x", "y")
# -1.0
otherwise you can use VectorAssembler
:
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(inputCols=df.columns, outputCol="features")
assembler.transform(df).select("features").flatMap(lambda x: x)

zero323
- 322,348
- 103
- 959
- 935
-
3It supports only pearson. – VJune Jun 03 '16 at 16:20
-
Trying VectorAssembler, I first got ('DataFrame' object has no attribute 'flatMap'). Then appended .rdd to select('features'). Now getting (Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 48.0 failed 1 times, most recent failure), when collecting the returned RDD. – Vaibhav Jun 11 '19 at 19:52
-
The solution found here helped: https://stackoverflow.com/questions/51831874/how-to-get-correlation-matrix-values-pyspark – Vaibhav Jun 11 '19 at 20:39
-
this returns a matrix without columns names. Anyway to assign column names respectively? Also, can we convert it into some different form so it can be exported? I know if converted to pandas DF colum names can be provided but converting is slow :/ – gamer Jan 30 '20 at 17:39
2
from pyspark.ml.stat import Correlation
from pyspark.ml.linalg import DenseMatrix, Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.functions import *
# Loading Data with more than 50 features
newdata = spark.read.csv("sample*.csv",inferSchema=True,header=True)
assembler = VectorAssembler(inputCols=newdata.columns,
outputCol="features",handleInvalid='keep')
df = assembler.transform(newdata).select("features")
# correlation will be in Dense Matrix
correlation = Correlation.corr(df,"features","pearson").collect()[0][0]
# To convert Dense Matrix into DataFrame
rows = correlation.toArray().tolist()
df = spark.createDataFrame(rows,newdata.columns)
1
Ok I figured it out:
v1 = df.flatMap(lambda x: Vectors.dense(x[col_idx_1]))
v2 = df.flatMap(lambda x: Vectors.dense(x[col_idx_2]))

VJune
- 1,195
- 5
- 16
- 26