2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2 power of 1000 (2^1000)?
Can anyone provide the solution or algorithm for this problem in java?
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2 power of 1000 (2^1000)?
Can anyone provide the solution or algorithm for this problem in java?
Here is my solution:
public static void main(String[] args) {
ArrayList<Integer> n = myPow(2, 100);
int result = 0;
for (Integer i : n) {
result += i;
}
System.out.println(result);
}
public static ArrayList<Integer> myPow(int n, int p) {
ArrayList<Integer> nl = new ArrayList<Integer>();
for (char c : Integer.toString(n).toCharArray()) {
nl.add(c - 48);
}
for (int i = 1; i < p; i++) {
nl = mySum(nl, nl);
}
return nl;
}
public static ArrayList<Integer> mySum(ArrayList<Integer> n1, ArrayList<Integer> n2) {
ArrayList<Integer> result = new ArrayList<Integer>();
int carry = 0;
int max = Math.max(n1.size(), n2.size());
if (n1.size() != max)
n1 = normalizeList(n1, max);
if (n2.size() != max)
n2 = normalizeList(n2, max);
for (int i = max - 1; i >= 0; i--) {
int n = n1.get(i) + n2.get(i) + carry;
carry = 0;
if (n > 9) {
String s = Integer.toString(n);
carry = s.charAt(0) - 48;
result.add(0, s.charAt(s.length() - 1) - 48);
} else
result.add(0, n);
}
if (carry != 0)
result.add(0, carry);
return result;
}
public static ArrayList<Integer> normalizeList(ArrayList<Integer> l, int max) {
int newSize = max - l.size();
for (int i = 0; i < newSize; i++) {
l.add(0, 0);
}
return l;
}
This code can be improved in many ways ... it was just to prove you can perfectly do it without BigInts.
The catch is to transform each number to a list. That way you can do basic sums like:
123456
+ 45
______
123501
Create a vector of length 302, which is the length of 2^1000. Then, save 2 at index 0, then, double 1000 times. Just look at every index separetly and add 1 to the next index if the previous exeeds 10. Then just sum it up!
This problem is not simply asking you how to find the nearest big integer library, so I'd avoid that solution. This page has a good overview of this particular problem.
something like that sould do it bute force: - although there is a nice analytic solution (think pen& paper) using mathematics - that may also work for numbers greater than 1000.
final String bignumber = BigInteger.valueOf(2).pow(1000).toString(10);
long result = 0;
for (int i = 0; i < bignumber.length(); i++) {
result += Integer.valueOf(String.valueOf(bignumber.charAt(i)));
}
System.out.println("result: " + result);
How can 2^1000 be alternatively expressed?
I don't remember much from my maths days, but perhaps something like (2^(2^500))? And how can that be expressed?
Find an easy way to calculate 2^1000, put the result in a BigInteger, and the rest is perhaps trivial.
Here is my code... Please provide the necessary arguments to run this code.
import java.math.BigInteger;
public class Question1 {
private static int SumOfDigits(BigInteger inputDigit) {
int sum = 0;
while(inputDigit.bitLength() > 0) {
sum += inputDigit.remainder(new BigInteger("10")).intValue();
inputDigit = inputDigit.divide(new BigInteger("10"));
}
return sum;
}
public static void main(String[] args) {
BigInteger baseNumber = new BigInteger(args[0]);
int powerNumber = Integer.parseInt(args[1]);
BigInteger powerResult = baseNumber.pow(powerNumber);
System.out.println(baseNumber + "^" + powerNumber + " = " + powerResult);
System.out.println("Sum of Digits = " + Question1.SumOfDigits(powerResult));
}
}
2^1000 is a very large value, you would have to use BigIntegers. The algorithm would be something like:
import java.math.BigInteger;
BigInteger two = new BigInteger("2");
BigInteger value = two.pow(1000);
int sum = 0;
while (value > 0) {
sum += value.remainder(new BigInteger("10"));
value = value.divide(new BigInteger("10"));
}
Alternatively, you could grab a double and manipulate its bits. With numbers that are the power of 2, you won't have truncation errors. Then you can convert it to string.
Having that said, it's still a brute-force approach. There must be a nice, mathematical way to make it without actually generating a number.