I've write a function which calculates mean, median and variance of the respond times in days. Hope that helps;
import datetime as d
import numpy as np
ymd_create = []
ymd_resdate = []
delta_t = []
class calculate:
def __init__(self):
self.result = 0
def meantime(self, issueobject):
for i in range(0, len(issueobject)):
ymd_create.append(d.datetime(int(issueobject[i].raw[u'fields'][u'created'].split('T')[0].split('-')[0]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[0].split('-')[1]), int(issueobject[i].raw[u'fields']
[u'created'].split('T')[0].split('-')[2]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[1].split(':')[0]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[1].split(':')[1])))
ymd_resdate.append(d.datetime(int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[0].split('-')[0]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[0].split('-')[1]), int(issueobject[i].raw[u'fields']
[u'resolutiondate'].split('T')[0].split('-')[2]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[1].split(':')[0]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[1].split(':')[1])))
delta_t.append((ymd_resdate[i] - ymd_create[i]).days)
self.result = np.mean(np.array(delta_t))
return self.result
def mediantime(self, issueobject):
for i in range(0, len(issueobject)):
ymd_create.append(d.datetime(int(issueobject[i].raw[u'fields'][u'created'].split('T')[0].split('-')[0]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[0].split('-')[1]), int(issueobject[i].raw[u'fields']
[u'created'].split('T')[0].split('-')[2]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[1].split(':')[0]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[1].split(':')[1])))
ymd_resdate.append(d.datetime(int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[0].split('-')[0]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[0].split('-')[1]), int(issueobject[i].raw[u'fields']
[u'resolutiondate'].split('T')[0].split('-')[2]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[1].split(':')[0]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[1].split(':')[1])))
delta_t.append((ymd_resdate[i] - ymd_create[i]).days)
self.result = np.median(np.array(delta_t))
return self.result
def variancetime(self, issueobject):
for i in range(0, len(issueobject)):
ymd_create.append(d.datetime(int(issueobject[i].raw[u'fields'][u'created'].split('T')[0].split('-')[0]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[0].split('-')[1]), int(issueobject[i].raw[u'fields']
[u'created'].split('T')[0].split('-')[2]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[1].split(':')[0]), int(issueobject[i].raw[u'fields'][u'created'].split('T')[1].split(':')[1])))
ymd_resdate.append(d.datetime(int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[0].split('-')[0]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[0].split('-')[1]), int(issueobject[i].raw[u'fields']
[u'resolutiondate'].split('T')[0].split('-')[2]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[1].split(':')[0]), int(issueobject[i].raw[u'fields'][u'resolutiondate'].split('T')[1].split(':')[1])))
delta_t.append((ymd_resdate[i] - ymd_create[i]).days)
self.result = np.var(np.array(delta_t))
return self.result