I have a Python app using a SQLite database (it's a data collector that runs daily by cron). I want to deploy it, probably on AWS or Google Container Engine, using Docker. I see three main steps:
1. Containerize and test the app locally.
2. Deploy and run the app on AWS or GCE.
3. Backup the DB periodically and download back to a local archive.
Recent posts (on Docker, StackOverflow and elsewhere) say that since 1.9, Volumes are now the recommended way to handle persisted data, rather than the "data container" pattern. For future compatibility, I always like to use the preferred, idiomatic method, however Volumes seem to be much more of a challenge than data containers. Am I missing something??
Following the "data container" pattern, I can easily:
- Build a base image with all the static program and config files.
- From that image create a data container image and copy my DB and backup directory into it (simple COPY in the Dockerfile).
- Push both images to Docker Hub.
- Pull them down to AWS.
- Run the data and base images, using "--volume-from" to refer to the data.
Using "docker volume create":
- I'm unclear how to copy my DB into the volume.
- I'm very unclear how to get that volume (containing the DB) up to AWS or GCE... you can't PUSH/PULL a volume.
Am I missing something regarding Volumes?
Is there a good overview of using Volumes to do what I want to do?
Is there a recommended, idiomatic way to backup and download data (either using the data container pattern or volumes) as per my step 3?