Suppose I have a data frame with a binary grouping variable and a factor. An example of such a grouping variable could specify assignment to the treatment and control conditions of an experiment. In the below, b is the grouping variable while a is an arbitrary factor variable:
a <- c("a","a","a","b","b")
b <- c(0,0,1,0,1)
df <- data.frame(a,b)
I want to complete two-sample t-tests to assess the below:
- For each level of a, whether there is a difference in the mean propensity to adopt that level between the groups specified in b.
I have used the dummies package to create separate dummies for each level of the factor and then manually performed t-tests on the resulting variables:
library(dummies)
new <- dummy.data.frame(df, names = "a")
t.test(new$aa, new$b)
t.test(new$ab, new$b)
I am looking for help with the following:
- Is there a way to perform this without creating a large number of dummy variables via dummy.data.frame()?
- If there is not a quicker way to do it without creating a large number of dummies, is there a quicker way to complete the t-test across multiple columns?
Note
This is similar to but different from R - How to perform the same operation on multiple variables and nearly the same as this question Apply t-test on many columns in a dataframe split by factor but the solution of that question no longer works.