Maybe I'm making predictions wrong?
Here's the project... I have a greyscale input image that I am trying to segment. The segmentation is a simple binary classification (think of foreground vs background). So the ground truth (y) is a matrix of 0's and 1's -- so there's 2 classifications. Oh and the input image is a square, so I just use one variable called n_input
My accuracy essentially converges to 0.99 but when I make a prediction I get all zero's. EDIT --> there is a single 1 in each output matrices, both in the same place...
Here's my session code(everything else is working)...
with tf.Session() as sess:
sess.run(init)
summary = tf.train.SummaryWriter('/tmp/logdir/', sess.graph_def)
step = 1
from tensorflow.contrib.learn.python.learn.datasets.scroll import scroll_data
data = scroll_data.read_data('/home/kendall/Desktop/')
# Keep training until reach max iterations
flag = 0
# while flag == 0:
while step * batch_size < training_iters:
batch_y, batch_x = data.train.next_batch(batch_size)
# pdb.set_trace()
# batch_x = batch_x.reshape((batch_size, n_input))
batch_x = batch_x.reshape((batch_size, n_input, n_input))
batch_y = batch_y.reshape((batch_size, n_input, n_input))
batch_y = convert_to_2_channel(batch_y, batch_size)
# batch_y = batch_y.reshape((batch_size, n_output, n_classes))
batch_y = batch_y.reshape((batch_size, 200, 200, n_classes))
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
flag = 1
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
save_path = "model.ckpt"
saver.save(sess, save_path)
im = Image.open('/home/kendall/Desktop/HA900_frames/frame0635.tif')
batch_x = np.array(im)
pdb.set_trace()
batch_x = batch_x.reshape((1, n_input, n_input))
batch_x = batch_x.astype(float)
# pdb.set_trace()
prediction = sess.run(pred, feed_dict={x: batch_x, keep_prob: 1.})
print prediction
arr1 = np.empty((n_input,n_input))
arr2 = np.empty((n_input,n_input))
for i in xrange(n_input):
for j in xrange(n_input):
for k in xrange(2):
if k == 0:
arr1[i][j] = prediction[0][i][j][k]
else:
arr2[i][j] = prediction[0][i][j][k]
# prediction = np.asarray(prediction)
# prediction = np.reshape(prediction, (200,200))
# np.savetxt("prediction.csv", prediction, delimiter=",")
np.savetxt("prediction1.csv", arr1, delimiter=",")
np.savetxt("prediction2.csv", arr2, delimiter=",")
Since there are two classifications, that end part (with the couple of loops) is just to partition the prediction into two 2x2 matrices.
I saved the prediction arrays to a CSV file, and like I said, they were all zeros.
I have also confirmed all data is correct (dimensions and values).
Why would the training converge, but predictions are awful?
If you want to look at all the code, here it is...
import tensorflow as tf
import pdb
import numpy as np
from numpy import genfromtxt
from PIL import Image
# Import MINST data
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.001
training_iters = 20000
batch_size = 128
display_step = 1
# Network Parameters
n_input = 200 # MNIST data input (img shape: 28*28)
n_output = 40000 # MNIST total classes (0-9 digits)
n_classes = 2
#n_input = 200
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input, n_input])
y = tf.placeholder(tf.float32, [None, n_input, n_input, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, n_input, n_input, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
conv1 = tf.nn.local_response_normalization(conv1)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = tf.nn.local_response_normalization(conv2)
conv2 = maxpool2d(conv2, k=2)
# Convolution Layer
conv3 = conv2d(conv2, weights['wc3'], biases['bc3'])
# Max Pooling (down-sampling)
conv3 = tf.nn.local_response_normalization(conv3)
conv3 = maxpool2d(conv3, k=2)
# pdb.set_trace()
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv3, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
output = []
for i in xrange(2):
output.append(tf.nn.softmax(tf.add(tf.matmul(fc1, weights['out']), biases['out'])))
return output
# return tf.nn.softmax(tf.add(tf.matmul(fc1, weights['out']), biases['out']))
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# 5x5 conv, 32 inputs, 64 outputs
'wc3': tf.Variable(tf.random_normal([5, 5, 64, 128])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([25*25*128, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_output]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bc3': tf.Variable(tf.random_normal([128])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_output]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# pdb.set_trace()
pred = tf.pack(tf.transpose(pred,[1,2,0]))
pred = tf.reshape(pred, [-1,n_input,n_input,n_classes])
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
saver = tf.train.Saver()
def convert_to_2_channel(x, batch_size):
#assume input has dimension (batch_size,x,y)
#output will have dimension (batch_size,x,y,2)
output = np.empty((batch_size, 200, 200, 2))
temp_arr1 = np.empty((batch_size, 200, 200))
temp_arr2 = np.empty((batch_size, 200, 200))
for i in xrange(batch_size):
for j in xrange(200):
for k in xrange(200):
if x[i][j][k] == 1:
temp_arr1[i][j][k] = 1
temp_arr2[i][j][k] = 0
else:
temp_arr1[i][j][k] = 0
temp_arr2[i][j][k] = 1
for i in xrange(batch_size):
for j in xrange(200):
for k in xrange(200):
for l in xrange(2):
if l == 0:
output[i][j][k][l] = temp_arr1[i][j][k]
else:
output[i][j][k][l] = temp_arr2[i][j][k]
return output
# Launch the graph
with tf.Session() as sess:
sess.run(init)
summary = tf.train.SummaryWriter('/tmp/logdir/', sess.graph_def)
step = 1
from tensorflow.contrib.learn.python.learn.datasets.scroll import scroll_data
data = scroll_data.read_data('/home/kendall/Desktop/')
# Keep training until reach max iterations
flag = 0
# while flag == 0:
while step * batch_size < training_iters:
batch_y, batch_x = data.train.next_batch(batch_size)
# pdb.set_trace()
# batch_x = batch_x.reshape((batch_size, n_input))
batch_x = batch_x.reshape((batch_size, n_input, n_input))
batch_y = batch_y.reshape((batch_size, n_input, n_input))
batch_y = convert_to_2_channel(batch_y, batch_size)
# batch_y = batch_y.reshape((batch_size, n_output, n_classes))
batch_y = batch_y.reshape((batch_size, 200, 200, n_classes))
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
flag = 1
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
save_path = "model.ckpt"
saver.save(sess, save_path)
im = Image.open('/home/kendall/Desktop/HA900_frames/frame0635.tif')
batch_x = np.array(im)
pdb.set_trace()
batch_x = batch_x.reshape((1, n_input, n_input))
batch_x = batch_x.astype(float)
# pdb.set_trace()
prediction = sess.run(pred, feed_dict={x: batch_x, keep_prob: 1.})
print prediction
arr1 = np.empty((n_input,n_input))
arr2 = np.empty((n_input,n_input))
for i in xrange(n_input):
for j in xrange(n_input):
for k in xrange(2):
if k == 0:
arr1[i][j] = prediction[0][i][j][k]
else:
arr2[i][j] = prediction[0][i][j][k]
# prediction = np.asarray(prediction)
# prediction = np.reshape(prediction, (200,200))
# np.savetxt("prediction.csv", prediction, delimiter=",")
np.savetxt("prediction1.csv", arr1, delimiter=",")
np.savetxt("prediction2.csv", arr2, delimiter=",")
# Calculate accuracy for 256 mnist test images
print "Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: data.test.images[:256],
y: data.test.labels[:256],
keep_prob: 1.})