Project Euler question:
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
My solution in Java:
public class problem21 {
private static int answer = 0;
public static void main(String[] args){
for(int a = 1; a<10000; a++){
int b = calculateSumOfDivisorsOf(a);
if(calculateSumOfDivisorsOf(b) == a && b!=a){
//amicable numbers
//a is always amicable
answer+=a;
if(b<10000){
//b is an amicable number under 10000
answer+=b;
}
}
}
System.out.println(answer);
}
public static int calculateSumOfDivisorsOf(double num){
String divisors = "1";
int sum = 0;
for(int i = 2; i< Math.sqrt(num); i++){
if(num%i == 0){
divisors+= " " + i;
if(num/i != i){
divisors += " " + num/i;
}
}
}
double[] divisorsArr = new double[divisors.split("\\s+").length];
for(int i = 0; i< divisors.split("\\s+").length; i++)
divisorsArr[i] = Double.parseDouble(divisors.split("\\s+")[i]);
for(int i = 0; i < divisorsArr.length; i++)
sum+= divisorsArr[i];
return sum;
}
}
My(incorrect) answer: 63252
What is wrong with my code? The correct answer is 31626