This is just something I came up with on my own, but it seems like a fun problem and it has me stumped.
You have a set of points in two-dimensional space, with one point designated "Start" and one "End". Each point has coordinates (in meters from the origin), but also an "acceleration number" (in meters/second of delta-V). Upon reaching a point (including the start), you may accelerate by up to that point's acceleration number in any direction. Edge cost is dependent on your current speed, but you also have to be moving in the correct direction.
Is there an efficient algorithm for finding the fastest path through to the end point? I haven't come up with anything better than "Try every path and check results". Djikstra's and other simple algorithms don't work, because you can't easily say that one path to an intermediate point is better or worse than another, if they have you arriving with different initial velocities.
If that's too easy, what if you add the requirement that you have to stop at the end point? (i.e., you must have less than its acceleration value when you reach the end.)
EDIT: To be clear, direction matters. You maintain a velocity vector as you traverse the graph, and acceleration means adding a vector to it, whose magnitude is capped at that point's acceleration number. This means there are situations where building up a huge velocity is detrimental, as you will be going too fast to "steer" towards other valuable points/your destination.