The question is:
My Question is now how can i create an object from a string in a
textfile, especially without knowing all derived classes.
The answer is: you have to know all the derived classes.
C++ does not have reflection. As such all class names are bound at compile time, and this kind of a factory has no choice but to do some variation of:
if (name == "box")
return new Box();
else if (name == "circle")
return new Circle();
// ... etc ... etc ...
There are various different approaches and design patterns that make it possible to automate some of this drudge work, and make this flexible enough to avoid having to explicitly maintain a hardcoded list of all subclasses.
I'll just outline a brief, very brief approach. A very simple one that I've used before, and achieves, pretty much, the same result: a factory that can instantiate a given subclass by name, in a manner where you don't have to manually edit the factory, and add a few more lines of code. The entire process of creating a factory for a new subclass can be neatly wrapped into the process of creating a new subclass, making this a fairly bulletproof, compartmentalized solution.
Consider a simple mechanism for registering a factory for these subclasses:
typedef Shape (*shape_factory_t)();
Shape
is your superclass of shapes.
The factory would work something like this:
std::map<std::string, shape_factory_t> all_factories;
void register_factory(const std::string &name, shape_factory_t factory)
{
all_factories[name]=factory;
}
So now you have a map of all your factories. Instead of an endless if
statement you have a single map, which you can look up by class name, and call the appropriate factory, something like:
auto iter=all_factories.find(name);
if (iter == all_factories.end())
throw; // Some exception, unknown subclass
return (*iter->second)();
All right, that part's taken care of. The issue now becomes: how to register a factory for each subclass.
Let's say you have an implementation of Circle:
class Circle : public Shape {
class initializer;
// ... other things that make up the Circle
};
Then, in circle.cpp
, which implements this subclass:
static Shape *create_circle()
{
return new Circle(); // Add constructor parameters, as appropriate
}
class Circle::initializer {
public:
initializer() {
register_factory("circle", create_circle);
}
};
static initializer initialize_me;
In this manner, the Circle
class registers itself with the factory that creates an instance of a given Shape
, by class name. You can proceed and implement all other subclasses, individually, without touching the main factory code. You can declare your Box
subclass in the same manner, and have it register itself with the factory, which will then automatically know to create a Box
class (presumably by invoking the create_box
() function), given the name "box".
There is one other detail that needs to be taken care of: initialization order. As you know, the relative initialization order of globally-scoped objects in different translation units is implementation defined, and is otherwise unspecified by C++.
The global std::map
of all factory functions must be constructed before all the subclasses try to register themselves, and put themselves into the map, when the application starts.
This is a fairly typical static initialization order fiasco question, for which there are several known solutions. The one explained in this answer should work fine, here.