I am writing a function which will find the minimum value and the index at which value was found a 1D array using CUDA.
I started by modifying the reduction code for finding sum of values in 1d array. The code work fine for sum function but I am not able to get it work for finding minimum. I am attaching the code in the message if there is any cuda guru please point out the mistake I am doing.
Actual function is below and in the test example array size is 1024. So, I am using shuffle reduction part. Problem is the out put values in g_oIdxs (gives the index) per block, and g_odata (gives the minimum value) per block is wrong compared to plain sequential CPU code.
Also values in g_odata is all zero (0) when I print it in host.
Thanks in advance!
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <math.h>
#include <unistd.h>
#include <sys/time.h>
#if __DEVICE_EMULATION__
#define DEBUG_SYNC __syncthreads();
#else
#define DEBUG_SYNC
#endif
#ifndef MIN
#define MIN(x,y) ((x < y) ? x : y)
#endif
#ifndef MIN_IDX
#define MIN_IDX(x,y, idx_x, idx_y) ((x < y) ? idx_x : idx_y)
#endif
#if (__CUDA_ARCH__ < 200)
#define int_mult(x,y) __mul24(x,y)
#else
#define int_mult(x,y) x*y
#endif
#define inf 0x7f800000
bool isPow2(unsigned int x)
{
return ((x&(x-1))==0);
}
unsigned int nextPow2(unsigned int x)
{
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
// Utility class used to avoid linker errors with extern
// unsized shared memory arrays with templated type
template<class T>
struct SharedMemory {
__device__ inline operator T *() {
extern __shared__ int __smem[];
return (T *) __smem;
}
__device__ inline operator const T *() const {
extern __shared__ int __smem[];
return (T *) __smem;
}
};
// specialize for double to avoid unaligned memory
// access compile errors
template<>
struct SharedMemory<double> {
__device__ inline operator double *() {
extern __shared__ double __smem_d[];
return (double *) __smem_d;
}
__device__ inline operator const double *() const {
extern __shared__ double __smem_d[];
return (double *) __smem_d;
}
};
/*
This version adds multiple elements per thread sequentially. This reduces the overall
cost of the algorithm while keeping the work complexity O(n) and the step complexity O(log n).
(Brent's Theorem optimization)
Note, this kernel needs a minimum of 64*sizeof(T) bytes of shared memory.
In other words if blockSize <= 32, allocate 64*sizeof(T) bytes.
If blockSize > 32, allocate blockSize*sizeof(T) bytes.
*/
template<class T, unsigned int blockSize, bool nIsPow2>
__global__ void reduce6(T *g_idata, T *g_odata, unsigned int n) {
T *sdata = SharedMemory<T>();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockSize * 2 + threadIdx.x;
unsigned int gridSize = blockSize * 2 * gridDim.x;
T mySum = 0;
// we reduce multiple elements per thread. The number is determined by the
// number of active thread blocks (via gridDim). More blocks will result
// in a larger gridSize and therefore fewer elements per thread
while (i < n) {
mySum += g_idata[i];
// ensure we don't read out of bounds -- this is optimized away for powerOf2 sized arrays
if (nIsPow2 || i + blockSize < n)
mySum += g_idata[i + blockSize];
i += gridSize;
}
// each thread puts its local sum into shared memory
sdata[tid] = mySum;
__syncthreads();
// do reduction in shared mem
if ((blockSize >= 512) && (tid < 256)) {
sdata[tid] = mySum = mySum + sdata[tid + 256];
}
__syncthreads();
if ((blockSize >= 256) && (tid < 128)) {
sdata[tid] = mySum = mySum + sdata[tid + 128];
}
__syncthreads();
if ((blockSize >= 128) && (tid < 64)) {
sdata[tid] = mySum = mySum + sdata[tid + 64];
}
__syncthreads();
#if (__CUDA_ARCH__ >= 300 )
if (tid < 32) {
// Fetch final intermediate sum from 2nd warp
if (blockSize >= 64)
mySum += sdata[tid + 32];
// Reduce final warp using shuffle
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
mySum += __shfl_down(mySum, offset);
}
}
#else
// fully unroll reduction within a single warp
if ((blockSize >= 64) && (tid < 32))
{
sdata[tid] = mySum = mySum + sdata[tid + 32];
}
__syncthreads();
if ((blockSize >= 32) && (tid < 16))
{
sdata[tid] = mySum = mySum + sdata[tid + 16];
}
__syncthreads();
if ((blockSize >= 16) && (tid < 8))
{
sdata[tid] = mySum = mySum + sdata[tid + 8];
}
__syncthreads();
if ((blockSize >= 8) && (tid < 4))
{
sdata[tid] = mySum = mySum + sdata[tid + 4];
}
__syncthreads();
if ((blockSize >= 4) && (tid < 2))
{
sdata[tid] = mySum = mySum + sdata[tid + 2];
}
__syncthreads();
if ((blockSize >= 2) && ( tid < 1))
{
sdata[tid] = mySum = mySum + sdata[tid + 1];
}
__syncthreads();
#endif
// write result for this block to global mem
if (tid == 0)
g_odata[blockIdx.x] = mySum;
}
/*
This version adds multiple elements per thread sequentially. This reduces the overall
cost of the algorithm while keeping the work complexity O(n) and the step complexity O(log n).
(Brent's Theorem optimization)
Note, this kernel needs a minimum of 64*sizeof(T) bytes of shared memory.
In other words if blockSize <= 32, allocate 64*sizeof(T) bytes.
If blockSize > 32, allocate blockSize*sizeof(T) bytes.
*/
template<class T, unsigned int blockSize, bool nIsPow2>
__global__ void reduceMin6(T *g_idata, int *g_idxs, T *g_odata, int *g_oIdxs, unsigned int n) {
T *sdata = SharedMemory<T>();
int *sdataIdx = SharedMemory<int>();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockSize * 2 + threadIdx.x;
unsigned int gridSize = blockSize * 2 * gridDim.x;
T myMin = 99999;
int myMinIdx = -1;
// we reduce multiple elements per thread. The number is determined by the
// number of active thread blocks (via gridDim). More blocks will result
// in a larger gridSize and therefore fewer elements per thread
while (i < n) {
myMinIdx = MIN_IDX(g_idata[i], myMin, g_idxs[i], myMinIdx);
myMin = MIN(g_idata[i], myMin);
// ensure we don't read out of bounds -- this is optimized away for powerOf2 sized arrays
if (nIsPow2 || i + blockSize < n){
//myMin += g_idata[i + blockSize];
myMinIdx = MIN_IDX(g_idata[i + blockSize], myMin, g_idxs[i + blockSize], myMinIdx);
myMin = MIN(g_idata[i + blockSize], myMin);
}
i += gridSize;
}
// each thread puts its local sum into shared memory
sdata[tid] = myMin;
sdataIdx[tid] = myMinIdx;
__syncthreads();
// do reduction in shared mem
if ((blockSize >= 512) && (tid < 256)) {
//sdata[tid] = mySum = mySum + sdata[tid + 256];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 256], myMin, sdataIdx[tid + 256], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 256], myMin);
}
__syncthreads();
if ((blockSize >= 256) && (tid < 128)) {
//sdata[tid] = myMin = myMin + sdata[tid + 128];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 128], myMin, sdataIdx[tid + 128], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 128], myMin);
}
__syncthreads();
if ((blockSize >= 128) && (tid < 64)) {
//sdata[tid] = myMin = myMin + sdata[tid + 64];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 64], myMin, sdataIdx[tid + 64], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 64], myMin);
}
__syncthreads();
#if (__CUDA_ARCH__ >= 300 )
if (tid < 32) {
// Fetch final intermediate sum from 2nd warp
if (blockSize >= 64){
//myMin += sdata[tid + 32];
myMinIdx = MIN_IDX(sdata[tid + 32], myMin, sdataIdx[tid + 32], myMinIdx);
myMin = MIN(sdata[tid + 32], myMin);
}
// Reduce final warp using shuffle
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
//myMin += __shfl_down(myMin, offset);
int tempMyMinIdx = __shfl_down(myMinIdx, offset);
float tempMyMin = __shfl_down(myMin, offset);
myMinIdx = MIN_IDX(tempMyMin, myMin, tempMyMinIdx , myMinIdx);
myMin = MIN(tempMyMin, myMin);
}
}
#else
// fully unroll reduction within a single warp
if ((blockSize >= 64) && (tid < 32))
{
//sdata[tid] = myMin = myMin + sdata[tid + 32];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 32], myMin, sdataIdx[tid + 32], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 32], myMin);
}
__syncthreads();
if ((blockSize >= 32) && (tid < 16))
{
//sdata[tid] = myMin = myMin + sdata[tid + 16];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 16], myMin, sdataIdx[tid + 16], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 16], myMin);
}
__syncthreads();
if ((blockSize >= 16) && (tid < 8))
{
//sdata[tid] = myMin = myMin + sdata[tid + 8];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 8], myMin, sdataIdx[tid + 8], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 8], myMin);
}
__syncthreads();
if ((blockSize >= 8) && (tid < 4))
{
//sdata[tid] = myMin = myMin + sdata[tid + 4];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 4], myMin, sdataIdx[tid + 4], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 4], myMin);
}
__syncthreads();
if ((blockSize >= 4) && (tid < 2))
{
//sdata[tid] = myMin = myMin + sdata[tid + 2];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 2], myMin, sdataIdx[tid + 2], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 2], myMin);
}
__syncthreads();
if ((blockSize >= 2) && ( tid < 1))
{
//sdata[tid] = myMin = myMin + sdata[tid + 1];
sdataIdx[tid] = myMinIdx = MIN_IDX(sdata[tid + 1], myMin, sdataIdx[tid + 1], myMinIdx);
sdata[tid] = myMin = MIN(sdata[tid + 1], myMin);
}
__syncthreads();
#endif
__syncthreads();
// write result for this block to global mem
if (tid == 0){
g_odata[blockIdx.x] = myMin;
g_oIdxs[blockIdx.x] = myMinIdx;
}
}
////////////////////////////////////////////////////////////////////////////////
// Compute the number of threads and blocks to use for the given reduction kernel
// For the kernels >= 3, we set threads / block to the minimum of maxThreads and
// n/2. For kernels < 3, we set to the minimum of maxThreads and n. For kernel
// 6, we observe the maximum specified number of blocks, because each thread in
// that kernel can process a variable number of elements.
////////////////////////////////////////////////////////////////////////////////
void getNumBlocksAndThreads(int whichKernel, int n, int maxBlocks,
int maxThreads, int &blocks, int &threads) {
//get device capability, to avoid block/grid size exceed the upper bound
cudaDeviceProp prop;
int device;
cudaGetDevice(&device);
cudaGetDeviceProperties(&prop, device);
if (whichKernel < 3) {
threads = (n < maxThreads) ? nextPow2(n) : maxThreads;
blocks = (n + threads - 1) / threads;
} else {
threads = (n < maxThreads * 2) ? nextPow2((n + 1) / 2) : maxThreads;
blocks = (n + (threads * 2 - 1)) / (threads * 2);
}
if ((float) threads * blocks
> (float) prop.maxGridSize[0] * prop.maxThreadsPerBlock) {
printf("n is too large, please choose a smaller number!\n");
}
if (blocks > prop.maxGridSize[0]) {
printf(
"Grid size <%d> exceeds the device capability <%d>, set block size as %d (original %d)\n",
blocks, prop.maxGridSize[0], threads * 2, threads);
blocks /= 2;
threads *= 2;
}
if (whichKernel == 6) {
blocks = MIN(maxBlocks, blocks);
}
}
////////////////////////////////////////////////////////////////////////////////
// Wrapper function for kernel launch
////////////////////////////////////////////////////////////////////////////////
template<class T>
void reduce(int size, int threads, int blocks, int whichKernel, T *d_idata,
T *d_odata) {
dim3 dimBlock(threads, 1, 1);
dim3 dimGrid(blocks, 1, 1);
// when there is only one warp per block, we need to allocate two warps
// worth of shared memory so that we don't index shared memory out of bounds
int smemSize =
(threads <= 32) ? 2 * threads * sizeof(T) : threads * sizeof(T);
if (isPow2(size)) {
switch (threads) {
case 512:
reduce6<T, 512, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 256:
reduce6<T, 256, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 128:
reduce6<T, 128, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 64:
reduce6<T, 64, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 32:
reduce6<T, 32, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 16:
reduce6<T, 16, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 8:
reduce6<T, 8, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 4:
reduce6<T, 4, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 2:
reduce6<T, 2, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 1:
reduce6<T, 1, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
}
} else {
switch (threads) {
case 512:
reduce6<T, 512, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 256:
reduce6<T, 256, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 128:
reduce6<T, 128, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 64:
reduce6<T, 64, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 32:
reduce6<T, 32, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 16:
reduce6<T, 16, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 8:
reduce6<T, 8, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 4:
reduce6<T, 4, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 2:
reduce6<T, 2, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
case 1:
reduce6<T, 1, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata,
d_odata, size);
break;
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Wrapper function for kernel launch
////////////////////////////////////////////////////////////////////////////////
template<class T>
void reduceMin(int size, int threads, int blocks, int whichKernel, T *d_idata,
T *d_odata, int *idxs, int *oIdxs) {
dim3 dimBlock(threads, 1, 1);
dim3 dimGrid(blocks, 1, 1);
// when there is only one warp per block, we need to allocate two warps
// worth of shared memory so that we don't index shared memory out of bounds
int smemSize =
(threads <= 32) ? 2 * threads * sizeof(T) : threads * sizeof(T);
if (isPow2(size)) {
switch (threads) {
case 512:
reduceMin6<T, 512, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 256:
reduceMin6<T, 256, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 128:
reduceMin6<T, 128, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 64:
reduceMin6<T, 64, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 32:
reduceMin6<T, 32, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 16:
reduceMin6<T, 16, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 8:
reduceMin6<T, 8, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 4:
reduceMin6<T, 4, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 2:
reduceMin6<T, 2, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 1:
reduceMin6<T, 1, true> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
}
} else {
switch (threads) {
case 512:
reduceMin6<T, 512, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 256:
reduceMin6<T, 256, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 128:
reduceMin6<T, 128, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 64:
reduceMin6<T, 64, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 32:
reduceMin6<T, 32, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 16:
reduceMin6<T, 16, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 8:
reduceMin6<T, 8, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 4:
reduceMin6<T, 4, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 2:
reduceMin6<T, 2, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
case 1:
reduceMin6<T, 1, false> <<<dimGrid, dimBlock, smemSize>>>(d_idata, idxs,
d_odata, oIdxs, size);
break;
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute sum reduction on CPU
//! We use Kahan summation for an accurate sum of large arrays.
//! http://en.wikipedia.org/wiki/Kahan_summation_algorithm
//!
//! @param data pointer to input data
//! @param size number of input data elements
////////////////////////////////////////////////////////////////////////////////
template<class T>
void reduceMINCPU(T *data, int size, T *min, int *idx)
{
*min = data[0];
int min_idx = 0;
T c = (T)0.0;
for (int i = 1; i < size; i++)
{
T y = data[i];
T t = MIN(*min, y);
min_idx = MIN_IDX(*min, y, min_idx, i);
(*min) = t;
}
*idx = min_idx;
return;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute sum reduction on CPU
//! We use Kahan summation for an accurate sum of large arrays.
//! http://en.wikipedia.org/wiki/Kahan_summation_algorithm
//!
//! @param data pointer to input data
//! @param size number of input data elements
////////////////////////////////////////////////////////////////////////////////
template<class T>
T reduceCPU(T *data, int size)
{
T sum = data[0];
T c = (T)0.0;
for (int i = 1; i < size; i++)
{
T y = data[i] - c;
T t = sum + y;
c = (t - sum) - y;
sum = t;
}
return sum;
}
// Instantiate the reduction function for 3 types
template void
reduce<int>(int size, int threads, int blocks, int whichKernel, int *d_idata,
int *d_odata);
template void
reduce<float>(int size, int threads, int blocks, int whichKernel,
float *d_idata, float *d_odata);
template void
reduce<double>(int size, int threads, int blocks, int whichKernel,
double *d_idata, double *d_odata);
// Instantiate the reduction function for 3 types
template void
reduceMin<int>(int size, int threads, int blocks, int whichKernel, int *d_idata,
int *d_odata, int *idxs, int *oIdxs);
template void
reduceMin<float>(int size, int threads, int blocks, int whichKernel, float *d_idata,
float *d_odata, int *idxs, int *oIdxs);
template void
reduceMin<double>(int size, int threads, int blocks, int whichKernel, double *d_idata,
double *d_odata, int *idxs, int *oIdxs);
unsigned long long int my_min_max_test(int num_els) {
// timers
unsigned long long int start;
unsigned long long int delta;
int maxThreads = 256; // number of threads per block
int whichKernel = 6;
int maxBlocks = 64;
int testIterations = 100;
float* d_in = NULL;
float* d_out = NULL;
int *d_idxs = NULL;
int *d_oIdxs = NULL;
printf("%d elements\n", num_els);
printf("%d threads (max)\n", maxThreads);
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(whichKernel, num_els, maxBlocks, maxThreads, numBlocks,
numThreads);
// in[1024] = 34.0f;
// in[333] = 55.0f;
// in[23523] = -42.0f;
// cudaMalloc((void**) &d_in, size);
// cudaMalloc((void**) &d_out, size);
// cudaMalloc((void**) &d_idxs, num_els * sizeof(int));
cudaMalloc((void **) &d_in, num_els * sizeof(float));
cudaMalloc((void **) &d_idxs, num_els * sizeof(int));
cudaMalloc((void **) &d_out, numBlocks * sizeof(float));
cudaMalloc((void **) &d_oIdxs, numBlocks * sizeof(int));
float* in = (float*) malloc(num_els * sizeof(float));
int *idxs = (int*) malloc(num_els * sizeof(int));
float* out = (float*) malloc(numBlocks * sizeof(float));
int* oIdxs = (int*) malloc(numBlocks * sizeof(int));
for (int i = 0; i < num_els; i++) {
in[i] = (double) rand() / (double) RAND_MAX;
idxs[i] = i;
}
for (int i = 0; i < num_els; i++) {
printf("\n [%d] = %.4f", idxs[i], in[i]);
}
// copy data directly to device memory
cudaMemcpy(d_in, in, num_els * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_idxs, idxs, num_els * sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, numBlocks * sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_oIdxs, oIdxs, numBlocks * sizeof(int),cudaMemcpyHostToDevice);
// warm-up
// reduce<float>(num_els, numThreads, numBlocks, whichKernel, d_in, d_out);
//
// cudaMemcpy(out, d_out, numBlocks * sizeof(float), cudaMemcpyDeviceToHost);
//
// for(int i=0; i< numBlocks; i++)
// printf("\nFinal Result[BLK:%d]: %f", i, out[i]);
// printf("\n Reduce CPU : %f", reduceCPU<float>(in, num_els));
reduceMin<float>(num_els, numThreads, numBlocks, whichKernel, d_in, d_out, d_idxs, d_oIdxs);
cudaMemcpy(out, d_out, numBlocks * sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(oIdxs, d_oIdxs, numBlocks * sizeof(int), cudaMemcpyDeviceToHost);
for(int i=0; i< numBlocks; i++)
printf("\n Reduce MIN GPU idx: %d value: %f", oIdxs[i], out[i]);
int min_idx;
float min;
reduceMINCPU<float>(in, num_els, &min, &min_idx);
printf("\n\n Reduce MIN CPU idx: %d value: %f", min_idx, min);
cudaFree(d_in);
cudaFree(d_out);
cudaFree(d_idxs);
free(in);
free(out);
//system("pause");
return delta;
}
int main(int argc, char* argv[]) {
printf(" GTS250 @ 70.6 GB/s - Finding min and max");
printf("\n N \t\t [GB/s] \t [perc] \t [usec] \t test \n");
//#pragma unroll
//for(int i = 1024*1024; i <= 32*1024*1024; i=i*2)
//{
// my_min_max_test(i);
//}
printf("\n Non-base 2 tests! \n");
printf("\n N \t\t [GB/s] \t [perc] \t [usec] \t test \n");
my_min_max_test(1024);
// just some large numbers....
//my_min_max_test(14*1024*1024+38);
//my_min_max_test(14*1024*1024+55);
//my_min_max_test(18*1024*1024+1232);
//my_min_max_test(7*1024*1024+94854);
//for(int i = 0; i < 4; i++)
//{
//
// float ratio = float(rand())/float(RAND_MAX);
// ratio = ratio >= 0 ? ratio : -ratio;
// int big_num = ratio*18*1e6;
//
// my_min_max_test(big_num);
//}
return 0;
}