I have been playing around with multiprocessing problem and notice my algorithm is slower when I parallelizes it than when it is single thread.
In my code I don't share memory. And I'm pretty sure my algorithm (see code), which is just nested loops is CPU bound.
However, no matter what I do. The parallel code runs 10-20% slower on all my computers.
I also ran this on a 20 CPUs virtual machine and single thread beats multithread every times (even slower up there than my computer, actually).
from multiprocessing.dummy import Pool as ThreadPool
from multi import chunks
from random import random
import logging
import time
from multi import chunks
## Product two set of stuff we can iterate over
S = []
for x in range(100000):
S.append({'value': x*random()})
H =[]
for x in range(255):
H.append({'value': x*random()})
# the function for each thread
# just nested iteration
def doStuff(HH):
R =[]
for k in HH['S']:
for h in HH['H']:
R.append(k['value'] * h['value'])
return R
# we will split the work
# between the worker thread and give it
# 5 item each to iterate over the big list
HChunks = chunks(H, 5)
XChunks = []
# turn them into dictionary, so i can pass in both
# S and H list
# Note: I do this because I'm not sure if I use the global
# S, will it spend too much time on cache synchronizatio or not
# the idea is that I dont want each thread to share anything.
for x in HChunks:
XChunks.append({'H': x, 'S': S})
print("Process")
t0 = time.time()
pool = ThreadPool(4)
R = pool.map(doStuff, XChunks)
pool.close()
pool.join()
t1 = time.time()
# measured time for 4 threads is slower
# than when i have this code just do
# doStuff(..) in non-parallel way
# Why!?
total = t1-t0
print("Took", total, "secs")
There are many related question opened, but many are geared toward code being structured incorrectly - each worker being IO bound and such.