I was trying to do an implementation of QuickSort (with median of 3 partitioning-element and insertion sort for small arrays) and compare it to an implementation of MergeSort, but even when QuickSort average time should be better than that of MergeSort, every time I execute it, it seems to be taking more time to sort an array (even one in random order). Any idea why can this be happening?
QuickSort:
public class Quick {
private static final int M = 10;
private static Random random = new Random();
public void sort(int[] a) {
sort(a, 0, a.length - 1);
insertionSort(a, 0, a.length - 1);
}
private void sort(int[] a, int lo, int hi) {
if (hi - lo <= 10) return;
swap(a, lo, pivot(a, lo, hi));
int lt = lo, gt = hi;
int v = a[lo];
int i = lo;
while (i <= gt) {
if (a[i] < v) swap(a, lt++, i++);
else if (a[i] > v) swap(a, i, gt--);
else i++;
}
// a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi].
sort(a, lo, lt-1);
sort(a, gt+1, hi);
}
private int pivot(int[] a, int lo, int hi) {
int r1 = random.nextInt(hi - lo) + lo,
r2 = random.nextInt(hi - lo) + lo,
r3 = random.nextInt(hi - lo) + lo;
return median3(a, r1, r2, r3);
}
private void swap(int[] a, int i, int j) {
if (i == j) return;
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
private static int median3(int[] a, int i, int j, int k) {
return (a[i] < a[j] ?
(a[j] < a[k] ? j : a[i] < a[k] ? k : i) :
(a[k] < a[j] ? j : a[k] < a[i] ? k : i));
}
private void insertionSort(int[] a, int lo, int hi) {
for (int i = lo; i <= hi; i++)
for (int j = i; j > lo && a[j] < a[j-1]; j--)
swap(a, j, j-1);
}
}
MergeSort:
public class Merge {
public void sort(int[] a) {
int[] aux = new int[a.length];
sort(a, aux, 0, a.length - 1);
}
private void sort(int[] a, int[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge(a, aux, lo, mid, hi);
}
private void merge(int[] a, int[] aux, int lo, int mid, int hi) {
System.arraycopy(a, lo, aux, lo, hi + 1 - lo);
// Merge
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (aux[j] < aux[i]) a[k] = aux[j++];
else a[k] = aux[i++];
}
}
}
For example, when I ran this algorithms for 10 random arrays of length 10^8, MergeSort took an average of 13385.8 ms to execute, while QuickSort took an average of 14096.7 ms.
To clarify, this is how I measured execution times
public static void main(String[] args) {
int pow = (int) Math.pow(10, 8);
int[] a, b;
double[] m1 = new double[10],
m2 = m1.clone(),
double st, et;
Merge merge = new Merge();
Quick quick = new Quick();
for (int i = 0; i < 10; i++) {
a = randomArray(pow);
b = a.clone();
st = currentTimeMillis();
merge.sort(a);
et = currentTimeMillis();
m1[i] = et - st;
st = currentTimeMillis();
quick.sort(b);
et = currentTimeMillis();
m2[i] = et - st;
}
out.println("MergeSort: " + mean(m1));
out.println("QuickSort: " + mean(m2));
}
private static int[] randomArray(int n) {
r = new Random();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) a[i] = r.nextInt();
return a;
}