I understand that passing an array to a method is still Pass-By-Value, however the "value" that is passed is the reference of the array. This implies that changing the contents of the array would cause the contents to get updated in an earlier frame (if it's a recursive algorithm), or when it goes back to the main method, for that matter.
import java.util.Arrays;
public class SameArrayPassedOn{
public static void main(String[] args) {
int[] a = {1,1,1};
print(a);
fun(a,0);
print(a);
}
static void fun(int[] b, int count)
{
if(count == 1)
return;
b[0] = b[1] = b[2] = 2;
fun(b,1);
}
static void print(int[] a)
{
for(int x : a)
System.out.print(x + " ");
System.out.println("");
}
}
Output 111 222
However, if you create a new array, like for example, in the code below, since the reference is changed, the updates won't be reflected when you go back to the main method.
import java.util.Arrays;
public class NewArrayCreatedAndReferencePassedOn{
public static void main(String[] args) {
int[] a = {1,1,1};
print(a);
fun(a,0);
print(a);
}
static void fun(int[] b, int count)
{
if(count == 1)
return;
int[] newb = {2,2,2};
fun(newb,1);
}
static void print(int[] a)
{
for(int x : a)
System.out.print(x + " ");
System.out.println("");
}
}
Output 111 111
However, my question is, why such a design was chosen for Arrays. Why couldn't it be that, just like for a primitive data type, say, integer variable, a new int is created every time it's passed inside a function, although we are not explicitly creating a new int, or declaring one. Like for example,
import java.util.Arrays;
public class SameIntPassedOn_ButNewCopyCreatedEachFrame {
public static void main(String[] args) {
int i = 0;
fun(i);
}
static void fun(int b)
{
System.out.println(b);
if(b == 10)
return;
b = b+1;
fun(b);
System.out.println(b);
}
}
Output
0 1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1
Had the same been done for arrays, it would've allowed us to have a different copy of the array for each frame of the recursive function, which would've been very handy.
I think it would've been nice to have uniformity in behavior, because at the moment, it looks as though, to achieve the same behavior with Arrays, as is exhibited by primitive data types, such as int, float etc, when passed to a method, it is necessary to use a 'new' keyword, and create a new array before passing on to the method.