Edit: I have already found the answer on the stack: https://stackoverflow.com/a/16280842/3319557
I face a problem with synchronization. I have two following methods:
public synchronized void incrementCounter1() {
counter++;
}
public void incrementCounter2() {
synchronized (counter) {
counter++;
}
}
I test each of those (separately) in many threads. First method behaves as expected, but second (incrementCounter2) is wrong. Can somebody explain why is this happening?
I assume this method is well designed, as I found something lookalike in Java Concurrency in Practice. Snipped from this book:
@ThreadSafe
public class ListHelper<E> {
public List<E> list = Collections.synchronizedList(new ArrayList<E>());
...
public boolean putIfAbsent(E x) {
synchronized (list) {
boolean absent = !list.contains(x);
if (absent)
list.add(x);
return absent;
}
}
}
I use monitor from the Object I am modifying, exactly like in book.
Full code here:
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SynchronizationTest {
public static final int N_THREADS = 500;
public static final int N_Loops = 5000;
private Integer counter = 0;
Lock l = new ReentrantLock();
public void incrementCounter0() {
counter++;
}
public synchronized void incrementCounter1() {
counter++;
}
public void incrementCounter2() {
synchronized (counter) {
counter++;
}
}
public void incrementCounter3() {
try {
l.lock();
counter++;
} finally {
l.unlock();
}
}
private interface IncrementStrategy {
void use(SynchronizationTest t);
}
private static class IncrementingRunnable implements Runnable {
SynchronizationTest synchronizationTest;
IncrementStrategy methodToUse;
public IncrementingRunnable(SynchronizationTest synchronizationTest, IncrementStrategy methodToUse) {
this.synchronizationTest = synchronizationTest;
this.methodToUse = methodToUse;
}
@Override
public void run() {
for (int i = 0; i < N_Loops; i++) {
methodToUse.use(synchronizationTest);
}
}
}
public void test(IncrementStrategy methodToUse, String methodName) {
counter = 0;
Thread[] threads = new Thread[N_THREADS];
for (int i = 0; i < N_THREADS; i++) {
threads[i] = new Thread(new IncrementingRunnable(this, methodToUse));
threads[i].start();
}
for (int i = 0; i < N_THREADS; i++) {
try {
threads[i].join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(methodName + " diff than expected " + (counter - N_THREADS * N_Loops));
}
public void test() {
test(t -> t.incrementCounter0(), "incrementCounter0 (expected to be wrong)");
test(t -> t.incrementCounter1(), "incrementCounter1");
test(t -> t.incrementCounter2(), "incrementCounter2");
test(t -> t.incrementCounter3(), "incrementCounter3");
}
public static void main(String[] args) {
new SynchronizationTest().test();
}
}
I know, that ExecutorService should be used, whole problem can be solved with AtomicLong, but it is not the point of this question.
Output of the code is:
incrementCounter0 (expected to be wrong) diff than expected -1831489
incrementCounter1 diff than expected 0
incrementCounter2 diff than expected -599314
incrementCounter3 diff than expected 0
PS. If I add the field to SynchronizationTest
Object counterLock = new Object();
and change incrementCounter2 to:
public void incrementCounter2() {
synchronized (counterLock) {
counter++;
}
}
Then incremetCounter2 works as expected.