I am trying to find a method for finding the nth ranked value and returning the column name. So for example, given a data-frame:
df = pd.DataFrame(np.random.randn(5, 4), columns = list('ABCD'))
# Return column name of "MAX" value, compared to other columns in any particular row.
df['MAX1_NAMES'] = df.idxmax(axis=1)
print df
A B C D MAX1_NAMES
0 -0.728424 -0.764682 -1.506795 0.722246 D
1 1.305500 -1.191558 0.068829 -1.244659 A
2 -0.175834 -0.140273 1.117114 0.817358 C
3 -0.255825 -1.534035 -0.591206 -0.352594 A
4 -2.408806 -1.925055 -1.797020 2.381936 D
This would find the highest value in the rows and return the column name where it occurred. But I need the case where I can choose the particular rank of the desired value, and hopefully get a data frame like the following:
A B C D MAX1_NAMES MAX2_NAMES
0 -0.728424 -0.764682 -1.506795 0.722246 D A
1 1.305500 -1.191558 0.068829 -1.244659 A C
2 -0.175834 -0.140273 1.117114 0.817358 C D
3 -0.255825 -1.534035 -0.591206 -0.352594 A D
4 -2.408806 -1.925055 -1.797020 2.381936 D C
Where MAX2_NAMES
is the second largest value in the row.
Thanks.