+I'm trying to implement a matlab algorithm in C++.
This is the matlab code:
p = 3;
K = [3 4 5; 4 5 6; 7 8 9];
e = ones(p,1);
K2 = K - (1/p)*K*ones(p) - 1/p + (1/p^2)*sum(K(:))
[V_K,D_K] = eig(K2);
While this is the analogous C++ code using OpenCV:
float data[] = {3, 4, 5,
4, 5, 6,
7, 8, 9};
cv::Mat m(3, 3, CV_32F, data);
float p = K.rows;
cv::Mat CK = K - (1/p)*K*cv::Mat::ones(p,p,CV_32F) - 1/p + (1/std::pow(p,2))*cv::sum(K)[0];
cv::Mat eigenvalues(1,p,CK.type()), eigenvectors(p,p,CK.type());
cv::eigen(CK,eigenvalues,eigenvectors);
The matlab code print:
CK =
4.3333 5.3333 6.3333
4.3333 5.3333 6.3333
4.3333 5.3333 6.3333
0.5774 0.6100 -0.1960
0.5774 -0.7604 -0.6799
0.5774 0.2230 0.7066
16.0000 0 0
0 -0.0000 0
0 0 0.0000
While the C++ code produces:
CK=[4.3333335, 5.3333335, 6.3333335;
4.3333335, 5.3333335, 6.3333335;
4.333333, 5.333333, 6.333333]
eigenvectors=[0.53452265, 0.56521076, 0.62834883;
-0.41672006, 0.8230716, -0.38587254;
0.73527533, 0.05558794, -0.67548501]
eigenvalues=[17.417906;
-0.33612049;
-1.0817847]
As you can see, the values are completely differents (even the ones of CK
!). Why this happens and how can I avoid it?
Note that I'm not completely sure that my C++ implementation is correct!
I found this and this question related, but they seem related to slightly differences, while here the error is huge!
UPDATE:
I've tried to follow to suggestions in comments & answers. Unfortunately, none of the solution proposed solved the problem. First of all I tried to use the Eigen
library with float
precision. This is the code using the Eigen::Map
structure as described here:
//in order to map OpenCV matrices to Eigen, they need to be continous
assert(CK.isContinuous());
Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> CKEigenMapped (CK.ptr<float>(), CK.rows, CK.cols);
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> CKEigen = CKEigenMapped;
Eigen::EigenSolver<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> es (CKEigen,true);
std::cout<<"Eigenvalues:"<<std::endl<< es.eigenvalues() << std::endl;
std::cout<<"Eigenvectors:"<<std::endl<< es.eigenvectors() << std::endl;
Then I tried to convert from float
to double
through CK.convertTo(CK, CV_64F)
:
//Double precision
CK.convertTo(CK, CV_64F);
Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> CKEigenMappedD (CK.ptr<double>(), CK.rows, CK.cols);
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> CKEigenD = CKEigenMappedD;
Eigen::EigenSolver<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> esD (CKEigenD,true);
std::cout<<"Eigenvalues:"<<std::endl<< esD.eigenvalues() << std::endl;
std::cout<<"Eigenvectors:"<<std::endl<< esD.eigenvectors() << std::endl;
Finally I tried to use the cv2eigen
function (I thought that Eigen::Map
could have been wrong) as described here:
//Double precision, cv2eigen
Eigen::MatrixXd X=Eigen::MatrixXd(CK.rows,CK.cols);
cv2eigen(CK,X);
Eigen::EigenSolver<Eigen::MatrixXd> esDD (X,true);
std::cout<<"Eigenvalues:"<<std::endl<< esDD.eigenvalues() << std::endl;
std::cout<<"Eigenvectors:"<<std::endl<< esDD.eigenvectors() << std::endl;
And these are the results corresponding to the 3 previous solutions:
Eigenvalues:
(-4.17233e-07,0)
(16,0)
(-3.37175e-07,0)
Eigenvectors:
(-0.885296,0) (0.57735,0) (-0.88566,0)
(0.328824,0) (0.57735,0) (0.277518,0)
(0.328824,0) (0.57735,0) (0.372278,0)
Eigenvalues:
(16,0)
(8.9407e-08,0)
(-1.88417e-16,0)
Eigenvectors:
(0.57735,0) (0.480589,0) (0.408248,0)
(0.57735,0) (0.480589,0) (-0.816497,0)
(0.57735,0) (-0.733531,0) (0.408248,0)
Eigenvalues:
(16,0)
(8.9407e-08,0)
(-1.88417e-16,0)
Eigenvectors:
(0.57735,0) (0.480589,0) (0.408248,0)
(0.57735,0) (0.480589,0) (-0.816497,0)
(0.57735,0) (-0.733531,0) (0.408248,0)
As you can notice:
- None of them correspond to the Matlab results ( :'( )
- There is a difference between using
double
andfloat
- There is no difference between using
Eigen::Map
andcv2eigen
Please note that I'm not expert in Eigen
and I could have used Eigen::EigenSolver
in a wrong way.
UPDATE 2:
This is starting to be a mess! This is the code using Amradillo. Notice that A
has the same values of K2
(CK
in C++):
arma::mat A(3,3);
A << 4.333333333333333 << 5.333333333333333 << 6.333333333333333 <<arma::endr
<< 4.333333333333333 << 5.333333333333333 << 6.333333333333333 <<arma::endr
<< 4.333333333333333 << 5.333333333333333 << 6.333333333333333 <<arma::endr;
arma::cx_vec eigval;
arma::cx_mat eigvec;
eig_gen(eigval,eigvec,A);
std::cout<<"eigval="<<std::endl<<eigval<<std::endl<<"eigvec="<<std::endl<<eigvec<<std::endl;
And these are the printed values:
eigval=
(+1.600e+01,+0.000e+00)
(-4.010e-17,+3.435e-16)
(-4.010e-17,-3.435e-16)
eigvec=
(+5.774e-01,+0.000e+00) (-5.836e-02,+3.338e-01) (-5.836e-02,-3.338e-01)
(+5.774e-01,+0.000e+00) (+7.174e-01,+0.000e+00) (+7.174e-01,-0.000e+00)
(+5.774e-01,+0.000e+00) (-5.642e-01,-2.284e-01) (-5.642e-01,+2.284e-01)
Seriously, what's wrong with all these libraries? They don't even closely agree with each other!