#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/highgui.hpp>
#include <opencv2/ml.hpp>
using namespace cv;
using namespace cv::ml;
using namespace std;
int main()
{
Mat img_mat = imread("/home/buddhika/workspace/project/images/t.jpg");
// Load images in the C++ format
Size size(64,124);//the image size,e.g.64x124
resize(img_mat ,img_mat ,size);//resize image
int num_files = 1;//number of images
int img_area = 64*124;//imag size
//initialize the training matrix
//The number of rows in the matrix would be 5, and the number of columns would be the area of the image, 64*124 = 12
Mat training_mat(num_files,img_area,CV_32FC1);
// "fill in" the rows of training_mat with the data from each image.
cvtColor(img_mat,img_mat, CV_RGB2GRAY);
imshow("",img_mat);
int ii = 0; // Current column in training_mat
//Do this for every training image
int file_num=0;
for (int i = 0; i<img_mat.rows; i++) {
for (int j = 0; j < img_mat.cols; j++) {
training_mat.at<float>(file_num,ii++) = img_mat.at<uchar>(i,j);
}
}
// training matrix set up properly to pass into the SVM functions
//set up labels for each training image
//1D matrix, where each element in the 1D matrix corresponds to each row in the 2D matrix.
//-1 for non-human and 1 for human
//labels matrix
float label = 1.0;
cout << training_mat.rows<< endl;
cout << training_mat.cols<< endl;
Mat labels(1,7936 , CV_32SC1, label);
// Set up SVM's parameters
Ptr<SVM> svmOld = SVM::create();
svmOld->setType(SVM::C_SVC);
svmOld->setKernel(SVM::LINEAR);
// svmOld->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
//train it based on your data
svmOld->train(training_mat, ROW_SAMPLE, labels);
//same svm
svmOld->save("positive.xml");
//Initialize SVM object
Ptr<SVM> svmNew = SVM::create();
//Load Previously saved SVM from XML
//can save the trained SVM so you don't have to retrain it every time
svmNew = SVM::load<SVM>("positive.xml");
//To test your images using the trained SVM, simply read an image, convert it to a 1D matrix, and pass that in to svm
// td.predict( training_mat);//It will return a value based on what you set as your labels
waitKey(0);
return(0);
}
This is the code I used for positive data train using SVM. But
svmOld->train(training_mat, ROW_SAMPLE, labels);
code crashed and give following error. How I overcome from this?
OpenCV Error: Bad argument (in the case of classification problem the responses must be categorical; either specify varType when creating TrainData, or pass integer responses) in train, file /home/buddhika/Documents/OpenCV/modules/ml/src/svm.cpp, line 1618 terminate called after throwing an instance of 'cv::Exception'