I wish to use the permutation distribution clustering package of R (https://cran.r-project.org/web/packages/pdc/pdc.pdf) for multivariate time series clustering. After using pdclust method(page 11 of the url pdf ) for hierarchical clustering, I plotted the dendogram using plot method (page 11 again). There are 60 samples. So, in the plot (Hierarchical clustering plot ), there are 60 time series but they are unlabelled. When I try to specify a vector of labels instead of labels = NULL, I always get this error "Error in graphics:::plotHclust(n1, merge, height, order(x$order), hang, : invalid dendrogram input". Any help will be appreciated. Here is my code:
data1 <- read.csv(file="file_PID_1_1Apr_00-03.csv",head=FALSE,sep=",")
data2 <- read.csv(file="file_PID_2_1Apr_00-03.csv",head=FALSE,sep=",")
data3 <- read.csv(file="file_PID_3_1Apr_00-03.csv",head=FALSE,sep=",")
data4 <- read.csv(file="file_PID_4_1Apr_00-03.csv",head=FALSE,sep=",")
data5 <- read.csv(file="file_PID_5_1Apr_00-03.csv",head=FALSE,sep=",")
data6 <- read.csv(file="file_PID_6_1Apr_00-03.csv",head=FALSE,sep=",")
data7 <- read.csv(file="file_PID_7_1Apr_00-03.csv",head=FALSE,sep=",")
data8 <- read.csv(file="file_PID_8_1Apr_00-03.csv",head=FALSE,sep=",")
data9 <- read.csv(file="file_PID_1_1Apr_03-06.csv",head=FALSE,sep=",")
data10 <- read.csv(file="file_PID_2_1Apr_03-06.csv",head=FALSE,sep=",")
data11 <- read.csv(file="file_PID_3_1Apr_03-06.csv",head=FALSE,sep=",")
data12 <- read.csv(file="file_PID_4_1Apr_03-06.csv",head=FALSE,sep=",")
data13 <- read.csv(file="file_PID_5_1Apr_03-06.csv",head=FALSE,sep=",")
data14 <- read.csv(file="file_PID_6_1Apr_03-06.csv",head=FALSE,sep=",")
data15 <- read.csv(file="file_PID_7_1Apr_03-06.csv",head=FALSE,sep=",")
data16 <- read.csv(file="file_PID_8_1Apr_03-06.csv",head=FALSE,sep=",")
data17 <- read.csv(file="file_PID_1_1Apr_06-09.csv",head=FALSE,sep=",")
data18 <- read.csv(file="file_PID_2_1Apr_06-09.csv",head=FALSE,sep=",")
data19 <- read.csv(file="file_PID_3_1Apr_06-09.csv",head=FALSE,sep=",")
data20 <- read.csv(file="file_PID_4_1Apr_06-09.csv",head=FALSE,sep=",")
data21 <- read.csv(file="file_PID_5_1Apr_06-09.csv",head=FALSE,sep=",")
data22 <- read.csv(file="file_PID_6_1Apr_06-09.csv",head=FALSE,sep=",")
data23 <- read.csv(file="file_PID_7_1Apr_06-09.csv",head=FALSE,sep=",")
data24 <- read.csv(file="file_PID_8_1Apr_06-09.csv",head=FALSE,sep=",")
data25 <- read.csv(file="file_PID_1_1Apr_09-12.csv",head=FALSE,sep=",")
data26 <- read.csv(file="file_PID_2_1Apr_09-12.csv",head=FALSE,sep=",")
data27 <- read.csv(file="file_PID_3_1Apr_09-12.csv",head=FALSE,sep=",")
data28 <- read.csv(file="file_PID_4_1Apr_09-12.csv",head=FALSE,sep=",")
data29 <- read.csv(file="file_PID_5_1Apr_09-12.csv",head=FALSE,sep=",")
data30 <- read.csv(file="file_PID_6_1Apr_09-12.csv",head=FALSE,sep=",")
data31 <- read.csv(file="file_PID_7_1Apr_09-12.csv",head=FALSE,sep=",")
data32 <- read.csv(file="file_PID_8_1Apr_09-12.csv",head=FALSE,sep=",")
data33 <- read.csv(file="file_PID_1_1Apr_12-15.csv",head=FALSE,sep=",")
data34 <- read.csv(file="file_PID_2_1Apr_12-15.csv",head=FALSE,sep=",")
data35 <- read.csv(file="file_PID_3_1Apr_12-15.csv",head=FALSE,sep=",")
data36 <- read.csv(file="file_PID_4_1Apr_12-15.csv",head=FALSE,sep=",")
data37 <- read.csv(file="file_PID_5_1Apr_12-15.csv",head=FALSE,sep=",")
data38 <- read.csv(file="file_PID_6_1Apr_12-15.csv",head=FALSE,sep=",")
data39 <- read.csv(file="file_PID_7_1Apr_12-15.csv",head=FALSE,sep=",")
data40 <- read.csv(file="file_PID_8_1Apr_12-15.csv",head=FALSE,sep=",")
data41 <- read.csv(file="file_PID_2_1Apr_15-18.csv",head=FALSE,sep=",")
data42 <- read.csv(file="file_PID_3_1Apr_15-18.csv",head=FALSE,sep=",")
data43 <- read.csv(file="file_PID_4_1Apr_15-18.csv",head=FALSE,sep=",")
data44 <- read.csv(file="file_PID_6_1Apr_15-18.csv",head=FALSE,sep=",")
data45 <- read.csv(file="file_PID_7_1Apr_15-18.csv",head=FALSE,sep=",")
data46 <- read.csv(file="file_PID_8_1Apr_15-18.csv",head=FALSE,sep=",")
data47 <- read.csv(file="file_PID_1_1Apr_18-21.csv",head=FALSE,sep=",")
data48 <- read.csv(file="file_PID_2_1Apr_18-21.csv",head=FALSE,sep=",")
data49 <- read.csv(file="file_PID_3_1Apr_18-21.csv",head=FALSE,sep=",")
data50 <- read.csv(file="file_PID_4_1Apr_18-21.csv",head=FALSE,sep=",")
data51 <- read.csv(file="file_PID_6_1Apr_18-21.csv",head=FALSE,sep=",")
data52 <- read.csv(file="file_PID_7_1Apr_18-21.csv",head=FALSE,sep=",")
data53 <- read.csv(file="file_PID_8_1Apr_18-21.csv",head=FALSE,sep=",")
data54 <- read.csv(file="file_PID_1_1Apr_21-24.csv",head=FALSE,sep=",")
data55 <- read.csv(file="file_PID_2_1Apr_21-24.csv",head=FALSE,sep=",")
data56 <- read.csv(file="file_PID_3_1Apr_21-24.csv",head=FALSE,sep=",")
data57 <- read.csv(file="file_PID_4_1Apr_21-24.csv",head=FALSE,sep=",")
data58 <- read.csv(file="file_PID_6_1Apr_21-24.csv",head=FALSE,sep=",")
data59 <- read.csv(file="file_PID_7_1Apr_21-24.csv",head=FALSE,sep=",")
data60 <- read.csv(file="file_PID_8_1Apr_21-24.csv",head=FALSE,sep=",")
list <- array(0,dim=c(720,60,4))
myfunc <- function(j,i,k){
if (j == 1) return (data1[i,k])
else if (j==2) return (data2[i,k])
else if (j==3) return (data17[i,k])
else if (j==4) return (data9[i,k])
else if (j==5) return (data5[i,k])
else if (j==6) return (data6[i,k])
else if (j==7) return (data7[i,k])
else if (j==8) return (data8[i,k])
else if (j==9) return (data9[i,k])
else if (j==10) return (data10[i,k])
else if (j==11) return (data11[i,k])
else if (j==12) return (data12[i,k])
else if (j==13) return (data13[i,k])
else if (j==14) return (data14[i,k])
else if (j==15) return (data15[i,k])
else if (j==16) return (data16[i,k])
else if (j==17) return (data17[i,k])
else if (j==18) return (data18[i,k])
else if (j==19) return (data19[i,k])
else if (j==20) return (data20[i,k])
else if (j==21) return (data21[i,k])
else if (j==22) return (data22[i,k])
else if (j==23) return (data23[i,k])
else if (j==24) return (data24[i,k])
else if (j==25) return (data25[i,k])
else if (j==26) return (data26[i,k])
else if (j==27) return (data27[i,k])
else if (j==28) return (data28[i,k])
else if (j==29) return (data29[i,k])
else if (j==30) return (data30[i,k])
else if (j==31) return (data31[i,k])
else if (j==32) return (data32[i,k])
else if (j==33) return (data33[i,k])
else if (j==34) return (data34[i,k])
else if (j==35) return (data35[i,k])
else if (j==36) return (data36[i,k])
else if (j==37) return (data37[i,k])
else if (j==38) return (data38[i,k])
else if (j==39) return (data39[i,k])
else if (j==40) return (data40[i,k])
else if (j==41) return (data41[i,k])
else if (j==42) return (data42[i,k])
else if (j==43) return (data43[i,k])
else if (j==44) return (data44[i,k])
else if (j==45) return (data45[i,k])
else if (j==46) return (data46[i,k])
else if (j==47) return (data47[i,k])
else if (j==48) return (data48[i,k])
else if (j==49) return (data49[i,k])
else if (j==50) return (data50[i,k])
else if (j==51) return (data51[i,k])
else if (j==52) return (data52[i,k])
else if (j==53) return (data53[i,k])
else if (j==54) return (data54[i,k])
else if (j==55) return (data55[i,k])
else if (j==56) return (data56[i,k])
else if (j==57) return (data57[i,k])
else if (j==58) return (data58[i,k])
else if (j==59) return (data59[i,k])
else if (j==60) return (data60[i,k])
}
list <- array(0,dim=c(720,60,4))
for(i in 1:720){
for (j in 1:60){
list[i,j,1] <- myfunc(j,i,6)
list[i,j,2] <- myfunc(j,i,7)
list[i,j,3] <- myfunc(j,i,8)
list[i,j,4] <- myfunc(j,i,9)
}
}
library("pdc")
clustering <- pdclust(list)
plot(clustering, labels= NULL, type="rectangle", timeseries.as.labels = T, p.values=T)