A first attempt using table
and cut
:
table(cut(x, breaks=seq(0,3,length.out=100)))
It avoids the extra output, but takes about 34 seconds on my computer:
system.time(table(cut(x, breaks=seq(0,3,length.out=100))))
user system elapsed
34.148 0.532 34.696
compared to 3.5 seconds for hist
:
system.time(hist(x, breaks=seq(0,3,length.out=100), plot=FALSE)$count)
user system elapsed
3.448 0.156 3.605
Using tabulate
and .bincode
runs a little bit faster than hist
:
tabulate(.bincode(x, breaks=seq(0,3,length.out=100)), nbins=100)
system.time(tabulate(.bincode(x, breaks=seq(0,3,length.out=100))), nbins=100)
user system elapsed
3.084 0.024 3.107
Using tablulate
and findInterval
provides a significant performance boost relative to table
and cut
and has an OK improvement relative to hist
:
tabulate(findInterval(x, vec=seq(0,3,length.out=100)), nbins=100)
system.time(tabulate(findInterval(x, vec=seq(0,3,length.out=100))), nbins=100)
user system elapsed
2.044 0.012 2.055