When I use pandas read_csv to read a column with a timezone aware datetime (and specify this column to be the index), pandas converts it to a timezone naive utc DatetimeIndex.
Data in Test.csv:
DateTime,Temperature
2016-07-01T11:05:07+02:00,21.125
2016-07-01T11:05:09+02:00,21.138
2016-07-01T11:05:10+02:00,21.156
2016-07-01T11:05:11+02:00,21.179
2016-07-01T11:05:12+02:00,21.198
2016-07-01T11:05:13+02:00,21.206
2016-07-01T11:05:14+02:00,21.225
2016-07-01T11:05:15+02:00,21.233
Code to read from csv:
In [1]: import pandas as pd
In [2]: df = pd.read_csv('Test.csv', index_col=0, parse_dates=True)
This results in an index that represents the timezone naive utc time:
In [3]: df.index
Out[3]: DatetimeIndex(['2016-07-01 09:05:07', '2016-07-01 09:05:09',
'2016-07-01 09:05:10', '2016-07-01 09:05:11',
'2016-07-01 09:05:12', '2016-07-01 09:05:13',
'2016-07-01 09:05:14', '2016-07-01 09:05:15'],
dtype='datetime64[ns]', name='DateTime', freq=None)
I tried to use a date_parser function:
In [4]: date_parser = lambda x: pd.to_datetime(x).tz_localize(None)
In [5]: df = pd.read_csv('Test.csv', index_col=0, parse_dates=True, date_parser=date_parser)
This gave the same result.
How can I make read_csv create a DatetimeIndex that is timezone naive and represents the local time instead of the utc time?
I'm using pandas 0.18.1.