I am trying to use the scipy.optimize function curve_fit to fit a set of data points using a custom exponential function. My code is as follows:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def fit(x, tau, beta):
return np.exp(-1 * np.power(x / tau, beta))
def plot_e2e(times, e2es):
optimalParams, covariance = curve_fit(fit, times, e2es)
tau = optimalParams[0]
beta = optimalParams[1]
print 'Tau is:', tau
print 'Beta is:', beta
if __name__ == '__main__':
% read_e2e_data not included for proprietary reasons.
times, e2es = read_e2e_data(fileName)
plot_e2e(times, e2es)
Doing this raises the following exception (line numbers may be different due to taking out unrelated stuff):
Traceback (most recent call last):
File ".\plot_e2e.py", line 54, in <module>
plot_e2e(times, e2es)
File ".\plot_e2e.py", line 34, in plot_e2e
optimalParams, covariance = curve_fit(fit, times, e2es)
File "C:\Anaconda\lib\site-packages\scipy\optimize\minpack.py", line 586, in curve_fit
raise RuntimeError(msg)
RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 600.
If I increase the maxfev parameter of curve_fit I instead get bogus values for Tau (4.035e-303).
My time and e2e vectors are thus:
time = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 11.0, 14.0, 17.0, 21.0, 25.0, 30.0, 37.0, 45.0, 54.0, 65.0, 78.0, 94.0, 113.0, 136.0, 163.0, 196.0, 236.0, 283.0, 340.0, 409.0, 491.0]
e2es = [1.0, 0.999804, 0.99964, 0.999497, 0.99937, 0.999276, 0.999139, 0.998974, 0.998566, 0.998005, 0.997225, 0.997073, 0.997793, 0.998586, 1.001542, 1.004414, 1.005311, 1.001431, 1.001016, 0.998936, 0.995649, 0.993765, 0.98663, 0.985266, 0.984635, 0.982588, 0.974413, 0.973811, 0.968772, 0.970131]
If you have any ideas as to what might be the issue, please let me know. I've been trying to debug this issue and have hit a dead end.