I have a pandas dataframe with mixed column names:
1,2,3,4,5, 'Class'
When I save this dataframe to h5file, it says that the performance will be affected due to mixed types. How do I convert the integer to string in pandas?
I have a pandas dataframe with mixed column names:
1,2,3,4,5, 'Class'
When I save this dataframe to h5file, it says that the performance will be affected due to mixed types. How do I convert the integer to string in pandas?
You can simply use df.columns = df.columns.astype(str)
:
In [26]: df = pd.DataFrame(np.random.random((3,6)), columns=[1,2,3,4,5,'Class'])
In [27]: df
Out[27]:
1 2 3 4 5 Class
0 0.773423 0.865091 0.614956 0.219458 0.837748 0.862177
1 0.544805 0.535341 0.323215 0.929041 0.042705 0.759294
2 0.215638 0.251063 0.648350 0.353999 0.986773 0.483313
In [28]: df.columns.map(type)
Out[28]:
array([<class 'int'>, <class 'int'>, <class 'int'>, <class 'int'>,
<class 'int'>, <class 'str'>], dtype=object)
In [29]: df.to_hdf("out.h5", "d1")
C:\Anaconda3\lib\site-packages\pandas\io\pytables.py:260: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->axis0] [items->None]
f(store)
C:\Anaconda3\lib\site-packages\pandas\io\pytables.py:260: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->block0_items] [items->None]
f(store)
In [30]: df.columns = df.columns.astype(str)
In [31]: df.columns.map(type)
Out[31]:
array([<class 'str'>, <class 'str'>, <class 'str'>, <class 'str'>,
<class 'str'>, <class 'str'>], dtype=object)
In [32]: df.to_hdf("out.h5", "d1")
In [33]:
You can simply use df.columns = df.columns.map(str)
DSM's first answer df.columns = df.columns.astype(str)
didn't work for my dataframe. (I got TypeError: Setting dtype to anything other than float64 or object is not supported)
You can always rename all columns using numbers like this post says [https://stackoverflow.com/a/44292845/11165920][1] and then select numeric column labels like this:
df[1]
instead of using usual string selection:
df.loc[:, '1']
And you won´t have mixed types either. [1]: https://stackoverflow.com/a/44292845/11165920