The answer given by Sarid has some strong points, and many of them are shared by researchers around the world. My opinions are shared by anyone who has actually worked with these topics in the real-world setting.... with real world, i mean implementing optical flow in drones, on mobile phones and IP cameras that are not sitting in a protected office, and where other systems (such as humans) need to interact and be co-dependent.
First of all, depending on your problem, you may want to invest time in looking for ready-made solutions. Optical flow sensors are readily available, cheap and robust (but usually not strong in accuracy). These are the kind of sensors you find in optical mice. They are low power, and easily interfaced with micro-controllers. Some have staggering sample rates of thousands of fps. They commonly have low spatial resolution however, and (to emphasize) high robustness but low accuracy.
If instead you are looking for the kind of optical flow that can be used for shape from motion, pedestrian detection and video-encoding, for example, then you are probably better off to look for something more advanced, and thats where Sarids answer becomes relevant.
Since your question has been migrated from robotics stack exchange, I am going to assume you are interested applications close to machine control and human machine interaction. In that case, the most important aspects are the ones usually most ignored by people working in the field of optical flow estimation, namely:
Latency. If you have a human interfacing at the front-end... then the common term is "glass-to-glass latency". This is completely different from the fps of your system, which is connected to throughput. If you find that you are in a discussion with someone, and they do not understand the difference between latency and fps, then they are not the expert you are interested in. For example, almost all researchers in computer vision who do GPU implementations of optical flow add massive latency by allowing for frame delays and ineffecient memory handling (inefficient from perspective of latency, but efficient in terms of throughput and hard-ware utilization). Consider the problem of controlling a drone, say make it self-stabilizing, it is better to receive a bad optical flow estimation 10 ms earlier, then a good one with 10 ms extra delay.... especially if the optical system does not give you any upper bounds of the delay for any given time.
Algorithm stability. This is completely different from accuracy. Accuracy is what 99% of all research in optical flow has been obsessing about for the last 30 years. Stability is not at all something evaluated in the Middlebury benchmark for example. Stability deals with how small changes in your data will guarantee small changes in the estimated optical flow. While some good work has been done in the community (on robust statistics most interestingly) in the end the final evaluation of any algortihm disregards stability. Consider the optical mouse as a good example. The first generations of optical mice had higher accuracy (the average error from the true motion was smaller) but they had lower stability (especially when you ran the mice over "bad textures", with rotational motions). Later generations of optical mouse have worse accuracy, but are focusing on the stability, as that is the most important thing. You dont experience the mouse cursor jumping around as much as you did the earlier days of the devices.... but if you move the mouse on your mat, left and right repeatedly, you will see the cursor slowly drifting (i.e. low accuracy).
Heat. Any device that will estimate high accuracy optical flow, will require lots of computations. When it comes to computations per watt, GPUs are not that good. In drones, you may be able to get away with this, because it is a setting where you have active cooling as a by-product of the propulsion system. In the real-world, you most often can not assume active cooling nor unlimited power supply.
To conclude, its a fascinating area, and I hope you have a great experience coding solutions.