I'm running the following program and each time I hit the 'build' API call I see about another 1 GB of memory being taken up after the process completes. I'm trying to eliminate everything from memory but I'm not sure what remains.
import tensorflow as tf
import tflearn
from flask import Flask, jsonify
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
app = Flask(__name__)
keep_prob = .8
num_labels = 3
batch_size = 64
class AlexNet():
def __init__(self):
@app.route('/build')
def build():
g = tf.Graph()
with g.as_default():
sess = tf.Session()
# Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, keep_prob)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, keep_prob)
network = fully_connected(network, num_labels, activation='softmax')
network = regression(network, optimizer="adam",
loss='categorical_crossentropy',
learning_rate=0.001, batch_size=batch_size)
model = tflearn.DNN(network, tensorboard_dir="./tflearn_logs/",
checkpoint_path=None, tensorboard_verbose=0, session=sess)
sess.run(tf.initialize_all_variables())
sess.close()
tf.reset_default_graph()
del g
del sess
del model
del network
return jsonify(status=200)
if __name__ == "__main__":
AlexNet()
app.run(host='0.0.0.0', port=5000, threaded=True)