I'm using R programming. I divided the data as train & test for predicting accuracy.
This is my code:
library("tree")
credit<-read.csv("C:/Users/Administrator/Desktop/german_credit (2).csv")
library("caret")
set.seed(1000)
intrain<-createDataPartition(y=credit$Creditability,p=0.7,list=FALSE)
train<-credit[intrain, ]
test<-credit[-intrain, ]
treemod<-tree(Creditability~. , data=train)
plot(treemod)
text(treemod)
cv.trees<-cv.tree(treemod,FUN=prune.tree)
plot(cv.trees)
prune.trees<-prune.tree(treemod,best=3)
plot(prune.trees)
text(prune.trees,pretty=0)
install.packages("e1071")
library("e1071")
treepred<-predict(prune.trees, newdata=test)
confusionMatrix(treepred, test$Creditability)
The following error message happens in confusionMatrix
:
Error in confusionMatrix.default(rpartpred, test$Creditability) : the data cannot have more levels than the reference
The credit data can download at this site.
http://freakonometrics.free.fr/german_credit.csv