I have been trying to build a beer recommendation engine, I have decided to make it simply using tf-idf and Cosine similarity .
Here is my code so far: `
import pandas as pd
import re
import numpy as np
from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
wnlzer = WordNetLemmatizer()
train = pd.read_csv("labeledTrainData.tsv" , header = 0 , \
delimiter = '\t' , quoting = 3)
def raw_string_to_list_clean_string( raw_train_review ):
remove_html = BeautifulSoup( raw_train_review ).text
remove_punch = re.sub('[^A-Za-z ]' , "" , remove_html)
token = remove_punch.lower().split()
srm_token = [wnlzer.lemmatize(i) for i in token if not i in set(stopwords.words('english'))]
clean_text = " ".join(srm_token)
return(clean_text)
ready_train_list = []
length = len(train['review'])
for i in range(0 , length):
if (i%100 == 0):
print "doing %d of %d of training data set" % (i+1 , length)
a = raw_string_to_list_clean_string(train['review'][i])
ready_train_list.append(a)
vectorizer = TfidfVectorizer(analyzer = "word" , tokenizer = None , preprocessor = None , \
stop_words = None , max_features = 20000)
training_our_vectorizer = vectorizer.fit_transform(ready_train_list)`
Now I know how to use cosine similarity but I am not able to figure out:
- how to make use of cosine
- how to restrict the recommendation to a max of 5 beers