I have a time series in python pandas dataframe object and I want to create a group based on index but I want overlapping groups i.e groups are not distinct. The header_sec is the index column. Each groups consists of a 2 second window. Input dataFrame
header_sec
1 17004 days 22:17:13
2 17004 days 22:17:13
3 17004 days 22:17:13
4 17004 days 22:17:13
5 17004 days 22:17:14
6 17004 days 22:17:14
7 17004 days 22:17:14
8 17004 days 22:17:14
9 17004 days 22:17:15
10 17004 days 22:17:15
11 17004 days 22:17:15
12 17004 days 22:17:15
13 17004 days 22:17:16
14 17004 days 22:17:16
15 17004 days 22:17:16
16 17004 days 22:17:16
17 17004 days 22:17:17
18 17004 days 22:17:17
19 17004 days 22:17:17
20 17004 days 22:17:17
My first group should have
1 17004 days 22:17:13
2 17004 days 22:17:13
3 17004 days 22:17:13
4 17004 days 22:17:13
5 17004 days 22:17:14
6 17004 days 22:17:14
7 17004 days 22:17:14
8 17004 days 22:17:14
The second group starts from the previous index and takes 1/2 of the records in previous second.
7 17004 days 22:17:14
8 17004 days 22:17:14
9 17004 days 22:17:15
10 17004 days 22:17:15
11 17004 days 22:17:15
12 17004 days 22:17:15
13 17004 days 22:17:16
14 17004 days 22:17:16
Third group .....
13 17004 days 22:17:16
14 17004 days 22:17:16
15 17004 days 22:17:16
16 17004 days 22:17:16
17 17004 days 22:17:17
18 17004 days 22:17:17
19 17004 days 22:17:17
20 17004 days 22:17:17
If I do groupby on index,
dfgroup=df.groupby(df.index)
this gives one group per second. What would be the best way to merge these groups?