I have a code that does Singular Value Decomposition (SVD) for square matrices. Code does the job however, it is quite slow and when matrix size increases it gets unbearable. As I am not familiar with parallel programming hence, I am asking advise from experts before I start digging deeper and eventually realize the action I want to achieve is not even possible.
Thank you in advance.
void SVD::decompose() {
bool flag;
int i, its, j, jj, k, l, nm;
double anorm, c, f, g, h, s, scale, x, y, z;
Row rv1(n);
g = scale = anorm = 0.0; //Householder reduction to bidiagonal form.
for (i = 0; i < n; i++) {
l = i + 2;
rv1[i] = scale*g;
g = s = scale = 0.0;
if (i < m) {
for (k = i; k < m; k++) scale += abs(u[k][i]);
if (scale != 0.0) {
for (k = i; k < m; k++) {
u[k][i] /= scale;
s += u[k][i] * u[k][i];
}
f = u[i][i];
g = -SIGN(sqrt(s), f);
h = f*g - s;
u[i][i] = f - g;
for (j = l - 1; j < n; j++) {
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
f = s / h;
for (k = i; k < m; k++) u[k][j] += f*u[k][i];
}
for (k = i; k < m; k++) u[k][i] *= scale;
}
}
w[i] = scale *g;
g = s = scale = 0.0;
if (i + 1 <= m && i + 1 != n) {
for (k = l - 1; k < n; k++) scale += abs(u[i][k]);
if (scale != 0.0) {
for (k = l - 1; k < n; k++) {
u[i][k] /= scale;
s += u[i][k] * u[i][k];
}
f = u[i][l - 1];
g = -SIGN(sqrt(s), f);
h = f*g - s;
u[i][l - 1] = f - g;
for (k = l - 1; k < n; k++) rv1[k] = u[i][k] / h;
for (j = l - 1; j < m; j++) {
for (s = 0.0, k = l - 1; k < n; k++) s += u[j][k] * u[i][k];
for (k = l - 1; k < n; k++) u[j][k] += s*rv1[k];
}
for (k = l - 1; k < n; k++) u[i][k] *= scale;
}
}
anorm = MAX(anorm, (abs(w[i]) + abs(rv1[i])));
}
for (i = n - 1; i >= 0; i--) { //Accumulation of right-hand tranformations.
if (i < n - 1) {
if (g != 0.0) {
for (j = l; j < n; j++) // Double division to avoid possible underflow.
v[j][i] = (u[i][j] / u[i][l]) / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
for (k = l; k < n; k++) v[k][j] += s*v[k][i];
}
}
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
}
for (i = MIN(m, n) - 1; i >= 0; i--) { //Accumulation of left-hand transformations.
l = i + 1;
g = w[i];
for (j = l; j < n; j++) u[i][j] = 0.0;
if (g != 0.0) {
g = 1.0 / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
f = (s / u[i][i])*g;
for (k = i; k < m; k++) u[k][j] += f*u[k][i];
}
for (j = i; j < m; j++) u[j][i] *= g;
}
else for (j = i; j < m; j++) u[j][i] = 0.0;
++u[i][i];
}
for (k = n - 1; k >= 0; k--) { //Diagonalization of the bidiagonal form: Loop over
for (its = 0; its < 30; its++) { //singular values, and over allowed iterations.
flag = true;
for (l = k; l >= 0; l--) { //Test ofr splitting.
nm = l - 1;
if (l == 0 || abs(rv1[l]) <= eps*anorm) {
flag = false;
break;
}
if (abs(w[nm]) <= eps*anorm) break;
}
if (flag) {
c = 0.0; //Cancellatin of rv[l], if l>0.
s = 1.0;
for (i = l; i < k + 1; i++) {
f = s*rv1[i];
rv1[i] = c*rv1[i];
if (abs(f) <= eps*anorm) break;
g = w[i];
h = pythag(f, g);
w[i] = h;
h = 1.0 / h;
c = g*h;
s = -f*h;
for (j = 0; j < m; j++) {
y = u[j][nm];
z = u[j][i];
u[j][nm] = y*c + z*s;
u[j][i] = z*c - y*s;
}
}
}
z = w[k];
if (l == k) { //Convergence.
if (z < 0.0) { //Singular value is made nonnegative.
w[k] = -z;
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
}
break;
}
x = w[l]; //Shift from bottom 2-by-2 minor.
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z)*(y + z) + (g - h)*(g + h)) / (2.0*h*y);
g = pythag(f, 1.0);
f = ((x - z)*(x + z) + h*((y / (f + SIGN(g, f))) - h)) / x;
c = s = 1.0; //Next QR transformation:
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1[i];
y = w[i];
h = s*g;
g = c*g;
z = pythag(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x*c + g*s;
g = g*c - x*s;
h = y*s;
y *= c;
for (jj = 0; jj < n; jj++) {
x = v[jj][j];
z = v[jj][i];
v[jj][j] = x*c + z*s;
v[jj][i] = z*c - x*s;
}
z = pythag(f, h);
w[j] = z; //Rotation can be arbitrary if z = 0.
if (z) {
z = 1.0 / z;
c = f*z;
s = h*z;
}
f = c*g + s*y;
x = c*y - s*g;
for (jj = 0; jj < m; jj++) {
y = u[jj][j];
z = u[jj][i];
u[jj][j] = y*c + z*s;
u[jj][i] = z*c - y*s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
}