I have a list with 15 data frames and they look like this
> head(final_data[[1]])
DateTime # Unemployed Persons.csv
147 2013-03-01 2320.58
148 2013-04-01 2336.89
149 2013-05-01 2213.78
150 2013-06-01 2135.90
151 2013-07-01 2302.79
152 2013-08-01 2177.01
> head(final_data[[2]])
DateTime Business Confidence.csv
46 2013-03-01 -6.2
47 2013-04-01 -1.3
48 2013-05-01 -2.4
49 2013-06-01 -5.1
50 2013-07-01 -2.0
51 2013-08-01 -1.8
and so on. The first column DateTime
is common across all the 15 dataframes. I would like to create a final output file which joins all these dataframes together and contains 16 columns something like this
DateTime # Unemployed Persons.csv Business Confidence.csv
147 2013-03-01 2320.58 -6.2
148 2013-04-01 2336.89 -1.3
149 2013-05-01 2213.78 -2.4
150 2013-06-01 2135.90 -5.1
151 2013-07-01 2302.79 -2.0
152 2013-08-01 2177.01 -1.8
I can do this manually by using the merge function but I would need your help to loop it over the entire list.
Thank You.
EDIT: If I use reduce, I get the following result ;
a <- Reduce(function(...) merge(..., by = "DateTime"), final_data)
view(a)
> a
DateTime Value
1 1994-01-31 455
2 1994-02-28 470
3 1994-03-31 455
4 1994-04-30 455
5 1994-05-31 356
6 1994-06-30 425
7 1994-07-31 445
8 1994-08-31 470
9 1994-09-30 470
10 1994-10-31 470
11 1994-11-30 445
12 1994-12-31 485
13 1995-01-31 497
14 1995-02-28 536
15 1995-03-31 546
16 1995-04-30 546
17 1995-05-31 556
18 1995-06-30 601
19 1995-07-31 611
20 1995-08-31 616
21 1995-09-30 641
22 1995-10-31 631
23 1995-11-30 601
24 1995-12-31 636
25 1996-01-31 620
26 1996-02-29 620
27 1996-03-31 635
28 1996-04-30 605
29 1996-05-31 605
30 1996-06-30 605
31 1996-07-31 615
32 1996-08-31 630
33 1996-09-30 630
34 1996-10-31 630
35 1996-11-30 640
36 1996-12-31 640
37 1997-01-31 640
38 1997-02-28 631
39 1997-03-31 611
40 1997-04-30 640
41 1997-05-31 640
42 1997-06-30 631
43 1997-07-31 596
44 1997-08-31 626
45 1997-09-30 650
46 1997-10-31 705
47 1997-11-30 734
48 1997-12-31 719
49 1998-01-31 690
50 1998-02-28 685
51 1998-03-31 699
52 1998-04-30 699
53 1998-05-31 709
54 1998-06-30 709
55 1998-07-31 709
56 1998-08-31 725
57 1998-09-30 748
58 1998-10-31 781
59 1998-11-30 815
60 1998-12-31 817
61 1999-01-31 842
62 1999-02-28 829
63 1999-03-31 829
64 1999-04-30 839
65 1999-05-31 814