Another solution is to use the result_type='expand'
argument of the pandas.apply
function available since pandas 0.23. Answering @splinter's question this method can be generalized -- see below:
import pandas as pd
from numpy import arange
df = pd.DataFrame(
{'column1' : [['a','b','c'],['d','e','f'],['g','h','i']],
'column2': [1,2,3]}
)
pd.melt(
df.join(
df.apply(lambda row: row['column1'], axis=1, result_type='expand')
),
value_vars=arange(df['column1'].shape[0]), value_name='column1', var_name='column2')[['column1','column2']]
# can be generalized
df = pd.DataFrame(
{'column1' : [['a','b','c'],['d','e','f'],['g','h','i']],
'column2': [1,2,3],
'column3': [[1,2],[2,3],[3,4]],
'column4': [42,23,321],
'column5': ['a','b','c']}
)
(pd.melt(
df.join(
df.apply(lambda row: row['column1'], axis=1, result_type='expand')
),
value_vars=arange(df['column1'].shape[0]), value_name='column1', id_vars=df.columns[1:])
.drop(columns=['variable'])[list(df.columns[:1]) + list(df.columns[1:])]
.sort_values(by=['column1']))
UPDATE (for Jwely's comment):
if you have lists with varying length, you can do:
df = pd.DataFrame(
{'column1' : [['a','b','c'],['d','f'],['g','h','i']],
'column2': [1,2,3]}
)
longest = max(df['column1'].apply(lambda x: len(x)))
pd.melt(
df.join(
df.apply(lambda row: row['column1'] if len(row['column1']) >= longest else row['column1'] + [None] * (longest - len(row['column1'])), axis=1, result_type='expand')
),
value_vars=arange(df['column1'].shape[0]), value_name='column1', var_name='column2').query("column1 == column1")[['column1','column2']]