The safest way that I know of is to loop through each section and find the section to be loaded last in memory (i.e. the highest address). You can almost always assume this is the last section and just skip directly to that section if you trust your PE file (such as if you are using a standard linker, etc). You begin with calculating the end-of-data pointer of that section as follows:
pEndOfLastSection = pLastSection->VirtualAddress + pLastSection->Misc.VirtualSize + pOptionalHeader->ImageBase
pEndOfLastSection
now represents the end of the actual section's data (as it exists in the file, padded to file alignment, but not padded to memory alignment) and doesn't include any padding the loader must add to ensure the section fits exactly within the granularity of the memory section alignment.
Despite the other fields that might seem to store the end of the section rounded up to the next nearest "memory" alignment, you must you must perform this calculation yourself on the pEndOfLastSection
pointer. I wrote the following function which so far has worked for my purposes:
//
// peRoundUpToAlignment() - rounds dwValue up to nearest dwAlign
//
DWORD peRoundUpToAlignment(DWORD dwAlign, DWORD dwVal)
{
if (dwAlign)
{
//do the rounding with bitwise operations...
//create bit mask of bits to keep
// e.g. if section alignment is 0x1000 1000000000000
// we want the following bitmask 11111111111111111111000000000000
DWORD dwMask = ~(dwAlign-1);
//round up by adding full alignment (dwAlign-1 since if already aligned we don't want anything to change),
// then mask off any lower bits
dwVal = (dwVal + dwAlign-1) & dwMask;
}
return(dwVal);
} //peRoundUpToAlignment()
Now take your pEndOfLastSecion
and pass it to the rounding function as follows:
//NOTE: we are rounding to memory section alignment, not file
pEndOfLastSectionMem = peRoundUpToAlignment(pOptionalHeader->SectionAlignment,pEndOfLastSection)
Now you have a "simulated" pointer to the end of the PE file as it would be loaded in memory. NOTE: the end pointers calculated above actually point 1 byte past the last byte of the last section; this allows you to subtract them from their base to get the size. Once you have the end pointer of the last section as it would be loaded in memory, you can subtract this from the loader base and get the size of the PE file as it should be loaded in memory, and this size is obviously the same regardless of where the loader might relocate the PE file:
uCalcSizeOfFile = pEndOfLastSectionMem - pOptionalHeader->ImageBase
Unless the image has been tampered with, the calculation of uCalcSizeOfFile
above should be equal to the pOptionalHeader->SizeOfImage
field.