Maybe the easiest way is to use np.unique
and to flatten the split arrays to compare them as tuple:
import numpy as np
# Generate some sample data:
a = np.random.uniform(size=(8,3))
# With repetition:
a = np.r_[a,a]
# Split a in 4 arrays
s = np.asarray(np.split(a, 4))
s = [tuple(e.flatten()) for e in s]
np.unique(s, return_counts=True)
Remark: return_counts
argument of np.unique
new in version 1.9.0.
An other pure numpy solution inspired from that post
# Generate some sample data:
In: a = np.random.uniform(size=(8,3))
# With some repetition
In: a = r_[a,a]
In: a.shape
Out: (16,3)
# Split a in 4 arrays
In: s = np.asarray(np.split(a, 4))
In: print s
Out: [[[ 0.78284847 0.28883662 0.53369866]
[ 0.48249722 0.02922249 0.0355066 ]
[ 0.05346797 0.35640319 0.91879326]
[ 0.1645498 0.15131476 0.1717498 ]]
[[ 0.98696629 0.8102581 0.84696276]
[ 0.12612661 0.45144896 0.34802173]
[ 0.33667377 0.79371788 0.81511075]
[ 0.81892789 0.41917167 0.81450135]]
[[ 0.78284847 0.28883662 0.53369866]
[ 0.48249722 0.02922249 0.0355066 ]
[ 0.05346797 0.35640319 0.91879326]
[ 0.1645498 0.15131476 0.1717498 ]]
[[ 0.98696629 0.8102581 0.84696276]
[ 0.12612661 0.45144896 0.34802173]
[ 0.33667377 0.79371788 0.81511075]
[ 0.81892789 0.41917167 0.81450135]]]
In: s.shape
Out: (4, 4, 3)
# Flatten the array:
In: s = asarray([e.flatten() for e in s])
In: s.shape
Out: (4, 12)
# Sort the rows using lexsort:
In: idx = np.lexsort(s.T)
In: s_sorted = s[idx]
# Create a mask to get unique rows
In: row_mask = np.append([True],np.any(np.diff(s_sorted,axis=0),1))
# Get unique rows:
In: out = s_sorted[row_mask]
# and count:
In: for e in out:
count = (e == s).all(axis=1).sum()
print e.reshape(4,3), count
Out:[[ 0.78284847 0.28883662 0.53369866]
[ 0.48249722 0.02922249 0.0355066 ]
[ 0.05346797 0.35640319 0.91879326]
[ 0.1645498 0.15131476 0.1717498 ]] 2
[[ 0.98696629 0.8102581 0.84696276]
[ 0.12612661 0.45144896 0.34802173]
[ 0.33667377 0.79371788 0.81511075]
[ 0.81892789 0.41917167 0.81450135]] 2