I wrote a function that can output Panda's DataFrame where it pulls all the metadata (not all of it because I didn't want to, but you can make some space for that) for playlists over 100 songs. I do it by iterating over every song, finding the metadata for each, saving the metadata to a dictionary, and then concatenating the dictionary to the DataFrame. It takes your username and the Playlist ID as input.
# Function to extract MetaData from a playlist thats longer than 100 songs
def get_playlist_tracks_more_than_100_songs(username, playlist_id):
results = sp.user_playlist_tracks(username,playlist_id)
tracks = results['items']
while results['next']:
results = sp.next(results)
tracks.extend(results['items'])
results = tracks
playlist_tracks_id = []
playlist_tracks_titles = []
playlist_tracks_artists = []
playlist_tracks_first_artists = []
playlist_tracks_first_release_date = []
playlist_tracks_popularity = []
for i in range(len(results)):
print(i) # Counter
if i == 0:
playlist_tracks_id = results[i]['track']['id']
playlist_tracks_titles = results[i]['track']['name']
playlist_tracks_first_release_date = results[i]['track']['album']['release_date']
playlist_tracks_popularity = results[i]['track']['popularity']
artist_list = []
for artist in results[i]['track']['artists']:
artist_list= artist['name']
playlist_tracks_artists = artist_list
features = sp.audio_features(playlist_tracks_id)
features_df = pd.DataFrame(data=features, columns=features[0].keys())
features_df['title'] = playlist_tracks_titles
features_df['all_artists'] = playlist_tracks_artists
features_df['popularity'] = playlist_tracks_popularity
features_df['release_date'] = playlist_tracks_first_release_date
features_df = features_df[['id', 'title', 'all_artists', 'popularity', 'release_date',
'danceability', 'energy', 'key', 'loudness',
'mode', 'acousticness', 'instrumentalness',
'liveness', 'valence', 'tempo',
'duration_ms', 'time_signature']]
continue
else:
try:
playlist_tracks_id = results[i]['track']['id']
playlist_tracks_titles = results[i]['track']['name']
playlist_tracks_first_release_date = results[i]['track']['album']['release_date']
playlist_tracks_popularity = results[i]['track']['popularity']
artist_list = []
for artist in results[i]['track']['artists']:
artist_list= artist['name']
playlist_tracks_artists = artist_list
features = sp.audio_features(playlist_tracks_id)
new_row = {'id':[playlist_tracks_id],
'title':[playlist_tracks_titles],
'all_artists':[playlist_tracks_artists],
'popularity':[playlist_tracks_popularity],
'release_date':[playlist_tracks_first_release_date],
'danceability':[features[0]['danceability']],
'energy':[features[0]['energy']],
'key':[features[0]['key']],
'loudness':[features[0]['loudness']],
'mode':[features[0]['mode']],
'acousticness':[features[0]['acousticness']],
'instrumentalness':[features[0]['instrumentalness']],
'liveness':[features[0]['liveness']],
'valence':[features[0]['valence']],
'tempo':[features[0]['tempo']],
'duration_ms':[features[0]['duration_ms']],
'time_signature':[features[0]['time_signature']]
}
dfs = [features_df, pd.DataFrame(new_row)]
features_df = pd.concat(dfs, ignore_index = True)
except:
continue
return features_df