The problem happens because of you didn't tokenize your documents before removing the stop words. Instead you iterate through each character and remove the characters that are stopwords, e.g. "a", "i":
>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>> stop
[u'i', u'me', u'my', u'myself', u'we', u'our', u'ours', u'ourselves', u'you', u'your', u'yours', u'yourself', u'yourselves', u'he', u'him', u'his', u'himself', u'she', u'her', u'hers', u'herself', u'it', u'its', u'itself', u'they', u'them', u'their', u'theirs', u'themselves', u'what', u'which', u'who', u'whom', u'this', u'that', u'these', u'those', u'am', u'is', u'are', u'was', u'were', u'be', u'been', u'being', u'have', u'has', u'had', u'having', u'do', u'does', u'did', u'doing', u'a', u'an', u'the', u'and', u'but', u'if', u'or', u'because', u'as', u'until', u'while', u'of', u'at', u'by', u'for', u'with', u'about', u'against', u'between', u'into', u'through', u'during', u'before', u'after', u'above', u'below', u'to', u'from', u'up', u'down', u'in', u'out', u'on', u'off', u'over', u'under', u'again', u'further', u'then', u'once', u'here', u'there', u'when', u'where', u'why', u'how', u'all', u'any', u'both', u'each', u'few', u'more', u'most', u'other', u'some', u'such', u'no', u'nor', u'not', u'only', u'own', u'same', u'so', u'than', u'too', u'very', u's', u't', u'can', u'will', u'just', u'don', u'should', u'now', u'd', u'll', u'm', u'o', u're', u've', u'y', u'ain', u'aren', u'couldn', u'didn', u'doesn', u'hadn', u'hasn', u'haven', u'isn', u'ma', u'mightn', u'mustn', u'needn', u'shan', u'shouldn', u'wasn', u'weren', u'won', u'wouldn']
>>> doc = "Sugar is bad to consume. My sister likes to have sugar, but not my father."
>>> "".join([i for i in doc.lower() if i not in stop])
'ugr b cnue. er lke hve ugr, bu n fher.'
You should have processed the stopword removals like this:
>>> from nltk import word_tokenize
>>> doc = "Sugar is bad to consume. My sister likes to have sugar, but not my father."
>>> " ".join([i for i in word_tokenize(doc.lower()) if i not in stop])
'sugar bad consume . sister likes sugar , father .'
See Stopword removal with NLTK
Actually, you pre-processsing pipeline can be simplified.
>>> import gensim
>>> doc1 = "Sugar is bad to consume. My sister likes to have sugar, but not my father."
>>> doc2 = "My father spends a lot of time driving my sister around to dance practice."
>>> doc3 = "Doctors suggest that driving may cause increased stress and blood pressure."
>>> doc4 = "Sometimes I feel pressure to perform well at school, but my father never seems to drive my sister to do better."
>>> doc5 = "Health experts say that Sugar is not good for your lifestyle."
>>> documents = [doc1, doc2, doc3, doc4, doc5]
>>> texts = map(gensim.utils.lemmatize,documents)
>>> texts
[['sugar/NN', 'be/VB', 'bad/JJ', 'consume/VB', 'sister/NN', 'like/VB', 'have/VB', 'sugar/NN', 'not/RB', 'father/NN'], ['father/NN', 'spend/VB', 'lot/NN', 'time/NN', 'drive/VB', 'sister/NN', 'dance/VB', 'practice/NN'], ['doctor/NN', 'suggest/VB', 'drive/VB', 'cause/VB', 'increased/JJ', 'stress/NN', 'blood/NN', 'pressure/NN'], ['sometimes/RB', 'feel/JJ', 'pressure/NN', 'perform/VB', 'well/RB', 'school/NN', 'father/NN', 'never/RB', 'seem/VB', 'drive/VB', 'sister/NN', 'do/VB', 'better/JJ'], ['health/NN', 'expert/NN', 'say/VB', 'sugar/NN', 'be/VB', 'not/RB', 'good/JJ', 'lifestyle/NN']]
Then to train the topic model:
>>> dictionary = gensim.corpora.Dictionary(texts)
>>> corpus = [dictionary.doc2bow(doc) for doc in texts]
>>> Lda = gensim.models.ldamodel.LdaModel
>>> ldamodel = Lda(corpus, num_topics=3, id2word = dictionary, passes=50)
>>> ldamodel.print_topics()
[(0, u'0.067*drive/VB + 0.067*pressure/NN + 0.067*stress/NN + 0.067*blood/NN + 0.067*doctor/NN + 0.067*increased/JJ + 0.067*cause/VB + 0.067*suggest/VB + 0.017*sister/NN + 0.017*father/NN'), (1, u'0.078*sugar/NN + 0.054*not/RB + 0.054*be/VB + 0.054*father/NN + 0.054*sister/NN + 0.031*do/VB + 0.031*seem/VB + 0.031*school/NN + 0.031*well/RB + 0.031*better/JJ'), (2, u'0.067*drive/VB + 0.067*sister/NN + 0.067*father/NN + 0.067*lot/NN + 0.067*practice/NN + 0.067*dance/VB + 0.067*spend/VB + 0.067*time/NN + 0.017*pressure/NN + 0.017*expert/NN')]